Table of Contents
ISRN Condensed Matter Physics
Volume 2012, Article ID 501686, 56 pages
http://dx.doi.org/10.5402/2012/501686
Review Article

Experimental Review of Graphene

McGill University, Montréal, QC, Canada H3A 2T8

Received 16 October 2011; Accepted 3 November 2011

Academic Editors: S. Bud'ko and Y. Kopelevich

Copyright © 2012 Daniel R. Cooper et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Reviews of Modern Physics, vol. 81, no. 1, pp. 109–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Reviews of Modern Physics, vol. 83, no. 2, pp. 407–470, 2011. View at Publisher · View at Google Scholar
  4. W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, “Synthesis of graphene and its applications: a review,” Critical Reviews in Solid State and Materials Sciences, vol. 35, no. 1, pp. 52–71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. H. Ni, Y. Y. Wang, T. Yu, and Z. X. Shen, “Raman spectroscopy and imaging of graphene,” Nano Research, vol. 1, no. 4, pp. 273–291, 2008. View at Google Scholar
  6. P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Letters, vol. 10, no. 11, pp. 4285–4294, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Giannazzo, V. Raineri, and E. Rimini, “Transport properties of graphene with nanoscale lateral resolution,” Scanning Probe Microscopy in Nanoscience and Nanotechnology, vol. 2, pp. 247–258, 2011. View at Google Scholar
  8. F. Schwierz, “Graphene transistors,” Nature Nanotechnology, vol. 5, no. 7, pp. 487–496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photonics, vol. 4, no. 9, pp. 611–622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. R. Wallace, “The band theory of graphite,” Physical Review, vol. 71, no. 9, pp. 622–634, 1947. View at Publisher · View at Google Scholar · View at Scopus
  11. L. A. Falkovsky, “Phonon dispersion in graphene,” Journal of Experimental and Theoretical Physics, vol. 105, no. 2, pp. 397–403, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Wirtz and A. Rubio, “The phonon dispersion of graphite revisited,” Solid State Communications, vol. 131, no. 3-4, pp. 141–152, 2004. View at Publisher · View at Google Scholar
  13. S. Bernard, E. Whiteway, V. Yu, D. G. Austing, and M. Hilke, “Experimental phonon band structure of graphene using C12 and C13 Isotopes,” Mesoscale and Nanoscale Physics. In press, http://arxiv.org/abs/1111.1643.
  14. K. S. Subrahmanyam, S. R.C. Vivekchand, A. Govindaraj, and C. N.R. Rao, “A study of graphenes prepared by different methods: characterization, properties and solubilization,” Journal of Materials Chemistry, vol. 18, no. 13, pp. 1517–1523, 2008. View at Publisher · View at Google Scholar
  15. P. Venezuela, M. Lazzeri, and F. Mauri, “Theory of double-resonant Raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands,” Physical Review B, vol. 84, no. 3, 2011. View at Publisher · View at Google Scholar
  16. K. V. Emtsev, A. Bostwick, K. Horn et al., “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nature Materials, vol. 8, no. 3, pp. 203–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Bae, H. Kim, Y. Lee et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature Nanotechnology, vol. 5, no. 8, pp. 574–578, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Li, C. W. Magnuson, A. Venugopal et al., “Graphene films with large domain size by a two-step chemical vapor deposition process,” Nano Letters, vol. 10, no. 11, pp. 4328–4334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Lee, K. Lee, and Z. Zhong, “Wafer scale homogeneous bilayer graphene films by chemical vapor deposition,” Nano Letters, vol. 10, no. 11, pp. 4702–4707, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Zhan, M. Olmedo, G. Wang, and J. Liu, “Layer-by-layer synthesis of large-area graphene films by thermal cracker enhanced gas source molecular beam epitaxy,” Carbon, vol. 49, no. 6, pp. 2046–2052, 2011. View at Publisher · View at Google Scholar
  21. H. He, J. Klinowski, M. Forster, and A. Lerf, “A new structural model for graphite oxide,” Chemical Physics Letters, vol. 287, no. 1-2, pp. 53–56, 1998. View at Google Scholar · View at Scopus
  22. M. J. McAllister, J. L. Li, D. H. Adamson et al., “Single sheet functionalized graphene by oxidation and thermal expansion of graphite,” Chemistry of Materials, vol. 19, no. 18, pp. 4396–4404, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Childres, L. A. Jauregui, J. Tian, and Y. P. Chen, “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New Journal of Physics, vol. 13, article 025008, 2011. View at Publisher · View at Google Scholar
  24. T. Gokus, R. R. Nair, A. Bonetti et al., “Making graphene luminescent by oxygen plasma treatment,” ACS Nano, vol. 3, no. 12, pp. 3963–3968, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Yu, Optics and chemical vapour deposition of graphene monolayers on various substrates, Ph.D. thesis, Mcgill University, 2010.
  26. P. Blake, E. W. Hill, A. H. Castro Neto et al., “Making graphene visible,” Applied Physics Letters, vol. 91, no. 6, Article ID 063124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature, vol. 446, no. 7131, pp. 60–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Y. Huang, C. S. Ruiz-Vargas, A. M. Van Der Zande et al., “Grains and grain boundaries in single-layer graphene atomic patchwork quilts,” Nature, vol. 469, no. 7330, pp. 389–392, 2011. View at Publisher · View at Google Scholar
  29. A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, “Quasiparticle dynamics in graphene,” Nature Physics, vol. 3, no. 1, pp. 36–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Y. Zhou, G. H. Gweon, A. V. Fedorov et al., “Substrate-induced bandgap opening in epitaxial graphene,” Nature Materials, vol. 6, no. 10, pp. 770–775, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. V. E. Dorgan, M. H. Bae, and E. Pop, “Mobility and saturation velocity in graphene on SiO2,” Applied Physics Letters, vol. 97, no. 8, Article ID 082112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. D. K. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Physical Review Letters, vol. 105, no. 25, article 256805, 2010. View at Publisher · View at Google Scholar
  34. J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, “Charged-impurity scattering in graphene,” Nature Physics, vol. 4, no. 5, pp. 377–381, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. H. Chen, W. G. Cullen, C. Jang, M. S. Fuhrer, and E. D. Williams, “Defect scattering in graphene,” Physical Review Letters, vol. 102, no. 23, Article ID 236805, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nature Nanotechnology, vol. 3, no. 4, pp. 206–209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “Chiral tunnelling and the Klein paradox in graphene,” Nature Physics, vol. 2, no. 9, pp. 620–625, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Stander, B. Huard, and D. Goldhaber-Gordon, “Evidence for Klein tunneling in graphene p-n junctions,” Physical Review Letters, vol. 102, no. 2, Article ID 026807, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. A. F. Young and P. Kim, “Quantum interference and Klein tunnelling in graphene heterojunctions,” Nature Physics, vol. 5, no. 3, pp. 222–226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. W. Tan, Y. Zhang, K. Bolotin et al., “Measurement of scattering rate and minimum conductivity in graphene,” Physical Review Letters, vol. 99, no. 24, Article ID 246803, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Adamyan and V. Zavalniuk, “Phonons in graphene with point defects,” Journal of Physics Condensed Matter, vol. 23, no. 1, article 015402, 2011. View at Publisher · View at Google Scholar
  43. V. N. Popov, “Theoretical evidence for T1/2 specific heat behavior in carbon nanotube systems,” Carbon, vol. 42, no. 5-6, pp. 991–995, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. M. S. Dresselhaus and P. C. Eklund, “Phonons in carbon nanotubes,” Advances in Physics, vol. 49, no. 6, pp. 705–814, 2000. View at Google Scholar · View at Scopus
  45. A. A. Balandin, S. Ghosh, W. Bao et al., “Superior thermal conductivity of single-layer graphene,” Nano Letters, vol. 8, no. 3, pp. 902–907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Ghosh, I. Calizo, D. Teweldebrhan et al., “Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits,” Applied Physics Letters, vol. 92, no. 15, Article ID 151911, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Chen, A. L. Moore, W. Cai et al., “Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments,” ACS Nano, vol. 5, no. 1, pp. 321–328, 2011. View at Publisher · View at Google Scholar
  48. C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R. R. Nair, and A. K. Geim, “Thermal conductivity of graphene in corbino membrane geometry,” ACS Nano, vol. 4, no. 4, pp. 1889–1892, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. J.-U. Lee, D. Yoon, H. Kim, S. W. Lee, and H. Cheong, “Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy,” Physical Review B, vol. 83, no. 8, article 081419, 2011. View at Publisher · View at Google Scholar
  50. A. D. Liao, J. Z. Wu, X. Wang et al., “Thermally limited current carrying ability of graphene nanoribbons,” Physical Review Letters, vol. 106, no. 25, article 256801, 2011. View at Publisher · View at Google Scholar
  51. J. H. Seol, I. Jo, A. L. Moore et al., “Two-dimensional phonon transport in supported graphene,” Science, vol. 328, no. 5975, pp. 213–216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. A. K. Geim, “Graphene: status and prospects,” Science, vol. 324, no. 5934, pp. 1530–1534, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. K. S. Kim, Y. Zhao, H. Jang et al., “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol. 457, no. 7230, pp. 706–710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Hass, W. A. De Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” Journal of Physics Condensed Matter, vol. 20, no. 32, Article ID 323202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Berger, Z. Song, T. Li et al., “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” Journal of Physical Chemistry B, vol. 108, no. 52, pp. 19912–19916, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. Z. Y. Juang, C. Y. Wu, C. W. Lo et al., “Synthesis of graphene on silicon carbide substrates at low temperature,” Carbon, vol. 47, no. 8, pp. 2026–2031, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Unarunotai, Y. Murata, C. E. Chialvo et al., “Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors,” Applied Physics Letters, vol. 95, no. 20, Article ID 202101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators,” Applied Physics Letters, vol. 93, no. 11, 2008. View at Publisher · View at Google Scholar
  59. X. Li, W. Cai, J. An et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, vol. 324, no. 5932, pp. 1312–1314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. V. Yu, E. Whiteway, J. Maassen, and M. Hilke, “Raman spectroscopy of the internal strain of a graphene layer grown on copper tuned by chemical vapor deposition,” Physical Review B, vol. 84, no. 20, article 205407, 2011. View at Google Scholar
  61. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii et al., “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons,” Nature, vol. 458, no. 7240, pp. 872–876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Choucair, P. Thordarson, and J. A. Stride, “Gram-scale production of graphene based on solvothermal synthesis and sonication,” Nature Nanotechnology, vol. 4, no. 1, pp. 30–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Duan, E. Xie, L. Han, and Z. Xu, “Turning PMMA nanofibers into graphene nanoribbons by in situ electron beam irradiation,” Advanced Materials, vol. 20, no. 17, pp. 3284–3288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, and C. N.R. Rao, “Simple method of preparing graphene flakes by an arc-discharge method,” Journal of Physical Chemistry C, vol. 113, no. 11, pp. 4257–4259, 2009. View at Publisher · View at Google Scholar
  65. X. Wang, L. Zhi, N. Tsao, Ž. Tomović, J. Li, and K. Müllen, “Transparent carbon films as electrodes in organic solar cells,” Angewandte Chemie, vol. 47, no. 16, pp. 2990–2992, 2008. View at Publisher · View at Google Scholar
  66. Y. Zhu, S. Murali, W. Cai et al., “Graphene and graphene oxide: synthesis, properties, and applications,” Advanced Materials, vol. 22, no. 35, pp. 3906–3924, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Stankovich, D. A. Dikin, R. D. Piner et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558–1565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. J. I. Parades, S. Villar-Rodil, A. Martínez-Alonso, and J. M.D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir, vol. 24, no. 19, pp. 10560–10564, 2008. View at Publisher · View at Google Scholar
  69. D. C. Marcano, D. V. Kosynkin, J. M. Berlin et al., “Improved synthesis of graphene oxide,” ACS Nano, vol. 4, no. 8, pp. 4806–4814, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. H. He, T. Riedl, A. Lerf, and J. Klinowski, “Solid-state NMR studies of the structure of graphite oxide,” Journal of Physical Chemistry, vol. 100, no. 51, pp. 19954–19958, 1996. View at Google Scholar · View at Scopus
  71. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” Journal of the American Chemical Society, vol. 80, no. 6, p. 1339, 1958. View at Google Scholar · View at Scopus
  72. L. Vandsburger, E. J. Swanson, J. Tavares, J. L. Meunier, and S. Coulombe, “Stabilized aqueous dispersion of multi-walled carbon nanotubes obtained by RF glow-discharge treatment,” Journal of Nanoparticle Research, vol. 11, no. 7, pp. 1817–1822, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. K. S. Hazra, J. Rafiee, M. A. Rafiee et al., “Thinning of multilayer graphene to monolayer graphene in a plasma environment,” Nanotechnology, vol. 22, no. 2, 2011. View at Publisher · View at Google Scholar
  74. H. X. You, N. M. D. Brown, and K. F. Al-Assadi, “Radio-frequency (RF) plasma etching of graphite with oxygen: a scanning tunnelling microscope study,” Surface Science, vol. 284, no. 3, pp. 263–272, 1993. View at Google Scholar · View at Scopus
  75. A. Nourbakhsh, M. Cantoro, T. Vosch et al., “Bandgap opening in oxygen plasma-treated graphene,” Nanotechnology, vol. 21, no. 43, 2010. View at Publisher · View at Google Scholar
  76. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Physical Chemistry Chemical Physics, vol. 9, no. 11, pp. 1276–1291, 2007. View at Publisher · View at Google Scholar
  77. Y. Y. Wang, Z. H. Ni, T. Yu et al., “Raman studies of monolayer graphene: the substrate effect,” Journal of Physical Chemistry C, vol. 112, no. 29, pp. 10637–10640, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. V. Yu and M. Hilke, “Large contrast enhancement of graphene monolayers by angle detection,” Applied Physics Letters, vol. 95, no. 15, 2009. View at Publisher · View at Google Scholar
  79. S. Y. Zhou, D. A. Siegel, A. V. Fedorov et al., “Origin of the energy bandgap in epitaxial graphene,” Nature Materials, vol. 7, no. 4, pp. 259–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. I. Gierz, C. Riedl, U. Starke, C. R. Ast, and K. Kern, “Atomic hole doping of graphene,” Nano Letters, vol. 8, no. 12, pp. 4603–4607, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. K. F. Mak, M. Y. Sfeir, J. A. Misewich, and T. F. Heinza, “The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 34, pp. 14999–15004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. H. Wu, T. Yu, and Z. X. Shen, “Two-dimensional carbon nanostructures: fundamental properties, synthesis, characterization, and potential applications,” Journal of Applied Physics, vol. 108, no. 7, article 071301, 2010. View at Publisher · View at Google Scholar
  83. L. A. Ponomarenko, R. Yang, T. M. Mohiuddin et al., “Effect of a high-κ environment on charge carrier mobility in graphene,” Physical Review Letters, vol. 102, no. 20, 2009. View at Publisher · View at Google Scholar
  84. C. R. Dean, A. F. Young, I. Meric et al., “Boron nitride substrates for high-quality graphene electronics,” Nature Nanotechnology, vol. 5, no. 10, pp. 722–726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Moser, A. Barreiro, and A. Bachtold, “Current-induced cleaning of graphene,” Applied Physics Letters, vol. 91, no. 16, 2007. View at Publisher · View at Google Scholar
  86. L. J. Van Der Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Research Reports, vol. 13, no. 1, pp. 1–9, 1958. View at Google Scholar
  87. Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, “Origin of spatial charge inhomogeneity in graphene,” Nature Physics, vol. 5, no. 10, pp. 722–726, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. M. I. Katsnelson and A. K. Geim, “Electron scattering on microscopic corrugations in graphene,” Philosophical Transactions of the Royal Society A, vol. 366, no. 1863, pp. 195–204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, “Temperature-dependent transport in suspended graphene,” Physical Review Letters, vol. 101, no. 9, Article ID 096802, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. N. M.R. Peres, “The transport properties of graphene,” Journal of Physics Condensed Matter, vol. 21, no. 32, 2009. View at Publisher · View at Google Scholar
  91. E. H. Hwang and S. Das Sarma, “Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene,” Physical Review B, vol. 77, no. 11, 2008. View at Publisher · View at Google Scholar
  92. S. Pisana, M. Lazzeri, C. Casiraghi et al., “Breakdown of the adiabatic Born-Oppenheimer approximation in graphene,” Nature Materials, vol. 6, no. 3, pp. 198–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, “A self-consistent theory for graphene transport,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18392–18397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. F. Schedin, A. K. Geim, S. V. Morozov et al., “Detection of individual gas molecules adsorbed on graphene,” Nature Materials, vol. 6, no. 9, pp. 652–655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. T. Stauber, N. M.R. Peres, and F. Guinea, “Electronic transport in graphene: a semiclassical approach including midgap states,” Physical Review B, vol. 76, no. 20, 2007. View at Publisher · View at Google Scholar
  96. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nature Nanotechnology, vol. 3, no. 8, pp. 491–495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. K. I. Bolotin, K. J. Sikes, Z. Jiang et al., “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, vol. 146, no. 9-10, pp. 351–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. O. V. Yazyev and S. G. Louie, “Electronic transport in polycrystalline graphene,” Nature Materials, vol. 9, no. 10, pp. 806–809, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, “Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties,” Nano Letters, vol. 9, no. 5, pp. 1752–1758, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. H. Cao, Q. Yu, L. A. Jauregui et al., “Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization,” Applied Physics Letters, vol. 96, no. 25, Article ID 259901, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. H. J. Park, J. Meyer, S. Roth, and V. Skákalová, “Growth and properties of few-layer graphene prepared by chemical vapor deposition,” Carbon, vol. 48, no. 4, pp. 1088–1094, 2010. View at Publisher · View at Google Scholar
  102. J. Martin, N. Akerman, G. Ulbricht et al., “Observation of electron-hole puddles in graphene using a scanning single-electron transistor,” Nature Physics, vol. 4, no. 2, pp. 144–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, “Phase-coherent transport in graphene quantum billiards,” Science, vol. 317, no. 5844, pp. 1530–1533, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. I. Meric, C. R. Dean, A. F. Young et al., “Channel length scaling in graphene field-effect transistors studied with pulsed current-voltage measurements,” Nano Letters, vol. 11, no. 3, pp. 1093–1097, 2011. View at Publisher · View at Google Scholar
  105. A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, “Transport properties of graphene in the high-current limit,” Physical Review Letters, vol. 103, no. 7, Article ID 076601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu, and P. Avouris, “The origins and limits of metal-graphene junction resistance,” Nature Nanotechnology, vol. 6, no. 3, pp. 179–184, 2011. View at Publisher · View at Google Scholar
  107. K. V. Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance,” Physical Review Letters, vol. 45, no. 6, pp. 494–497, 1980. View at Publisher · View at Google Scholar · View at Scopus
  108. K. S. Novoselov, Z. Jiang, Y. Zhang et al., “Room-temperature quantum hall effect in graphene,” Science, vol. 315, no. 5817, p. 1379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, “Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene,” Nature, vol. 462, no. 7270, pp. 192–195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. C. R. Dean, A. F. Young, P. Cadden-Zimansky et al., “Multicomponent fractional quantum Hall effect in graphene,” Nature Physics, vol. 7, no. 9, pp. 693–696, 2011. View at Publisher · View at Google Scholar
  111. K. S. Novoselov, E. McCann, S. V. Morozov et al., “Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene,” Nature Physics, vol. 2, no. 3, pp. 177–180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. V. M. Apalkov and T. Chakraborty, “Fractional quantum hall states of dirac electrons in graphene,” Physical Review Letters, vol. 97, no. 12, Article ID 126801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. Z. F. Ezawa, Quantum Hall Effects: Field Theoretical Approach and Related Topics, World Scientific, Hackensack, NJ, USA, 2008.
  114. V. P. Gusynin and S. G. Sharapov, “Unconventional integer quantum hall effect in graphene,” Physical Review Letters, vol. 95, no. 14, Article ID 146801, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Studies in Semiconductor Physics and Microelectronics Engineering, Cambridge University Press, New York, NY, USA, 1997.
  116. F. V. Tikhonenko, A. A. Kozikov, A. K. Savchenko, and R. V. Gorbachev, “Transition between electron localization and antilocalization in graphene,” Physical Review Letters, vol. 103, no. 22, 2009. View at Publisher · View at Google Scholar
  117. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson et al., “Strong suppression of weak localization in graphene,” Physical Review Letters, vol. 97, no. 1, Article ID 016801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. E. Mccann, K. Kechedzhi, V. I. Fala'Ko, H. Suzuura, T. Ando, and B. L. Altshuler, “Weak-localization magnetoresistance and valley symmetry in graphene,” Physical Review Letters, vol. 97, no. 14, 2006. View at Publisher · View at Google Scholar
  119. Y. Zhang, Z. Jiang, J. P. Small et al., “Landau-level splitting in graphene in high magnetic fields,” Physical Review Letters, vol. 96, no. 13, Article ID 136806, pp. 1–4, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. E. Whiteway, V. Yu, J. Lefebvre, R. Gagnon, and M. Hilke, “Magneto-transport of large CVD-grown graphene,” Disordered Systems and Neural Networks. In press, http://arxiv.org/abs/1011.5712.
  121. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry's phase in graphene,” Nature, vol. 438, no. 7065, pp. 201–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  122. Y. Zhao, P. Cadden-Zimansky, Z. Jiang, and P. Kim, “Symmetry breaking in the zero-energy landau level in bilayer graphene,” Physical Review Letters, vol. 104, no. 6, Article ID 066801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim, “Observation of the fractional quantum Hall effect in graphene,” Nature, vol. 462, no. 7270, pp. 196–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  124. J. S. Bunch, A. M. Van Der Zande, S. S. Verbridge et al., “Electromechanical resonators from graphene sheets,” Science, vol. 315, no. 5811, pp. 490–493, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-dimensional magnetotransport in the extreme quantum limit,” Physical Review Letters, vol. 48, no. 22, pp. 1559–1562, 1982. View at Publisher · View at Google Scholar · View at Scopus
  126. D. Li and R. B. Kaner, “Materials science: graphene-based materials,” Science, vol. 320, no. 5880, pp. 1170–1171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. H. G. Craighead, “Nanoelectromechanical systems,” Science, vol. 290, no. 5496, pp. 1532–1535, 2000. View at Google Scholar · View at Scopus
  128. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Review of Scientific Instruments, vol. 76, no. 6, Article ID 061101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. I. W. Frank, D. M. Tanenbaum, A. M. Van Der Zande, and P. L. McEuen, “Mechanical properties of suspended graphene sheets,” Journal of Vacuum Science and Technology B, vol. 25, no. 6, pp. 2558–2561, 2007. View at Publisher · View at Google Scholar · View at Scopus
  130. J. S. Bunch, S. S. Verbridge, J. S. Alden et al., “Impermeable atomic membranes from graphene sheets,” Nano Letters, vol. 8, no. 8, pp. 2458–2462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. W. Weaver, S. Timoshenko, and D. Young, Vibration Problems in Engineering, Wiley-Interscience, New York, NY, USA, 1990.
  132. B. T. Kelly, Physics of Graphite, Applied Science, London, UK, 1981.
  133. V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. Arias, and P. McEuen, “A tunable carbon nanotube electromechanical oscillator,” Nature, vol. 431, no. 7006, pp. 284–287, 2004. View at Google Scholar
  134. S. Scharfenberg, D. Z. Rocklin, C. Chialvo, R. L. Weaver, P. M. Goldbart, and N. Mason, “Probing the mechanical properties of graphene using a corrugated elastic substrate,” Applied Physics Letters, vol. 98, no. 9, 2011. View at Publisher · View at Google Scholar
  135. L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structures in nanocrystalline diamond,” Applied Physics Letters, vol. 81, no. 23, pp. 4455–4457, 2002. View at Publisher · View at Google Scholar · View at Scopus
  136. S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, “High quality factor resonance at room temperature with nanostrings under high tensile stress,” Journal of Applied Physics, vol. 99, no. 12, 2006. View at Publisher · View at Google Scholar
  137. J. T. Robinson, M. Zalalutdinov, J. W. Baldwin et al., “Wafer-scale reduced graphene oxide films for nanomechanical devices,” Nano Letters, vol. 8, no. 10, pp. 3441–3445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. S. Shivaraman, R. A. Barton, X. Yu et al., “Free-standing epitaxial graphene,” Nano Letters, vol. 9, no. 9, pp. 3100–3105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. R. A. Barton, B. Ilic, A. M. Van Der Zande et al., “High, size-dependent quality factor in an array of graphene mechanical resonators,” Nano Letters, vol. 11, no. 3, pp. 1232–1236, 2011. View at Publisher · View at Google Scholar
  140. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, “Controlling the electronic structure of bilayer graphene,” Science, vol. 313, no. 5789, pp. 951–954, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nature Materials, vol. 7, no. 2, pp. 151–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Physical Review Letters, vol. 98, no. 20, 2007. View at Publisher · View at Google Scholar
  143. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science, vol. 319, no. 5867, pp. 1229–1232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. R. Balog, B. Jørgensen, L. Nilsson et al., “Bandgap opening in graphene induced by patterned hydrogen adsorption,” Nature Materials, vol. 9, no. 4, pp. 315–319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. L. Liao, Y. C. Lin, M. Bao et al., “High-speed graphene transistors with a self-aligned nanowire gate,” Nature, vol. 467, no. 7313, pp. 305–308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. K. Chung, C.-H. Lee, and G.-C. Yi, “Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices,” Science, vol. 330, no. 6004, pp. 655–657, 2010. View at Publisher · View at Google Scholar
  147. G. Jo, M. Choe, C.-Y. Cho et al., “Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes,” Nanotechnology, vol. 21, no. 17, article 175201, 2010. View at Google Scholar
  148. P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman, and N. D. Robinson, “Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices,” ACS Nano, vol. 4, no. 2, pp. 637–642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices,” Applied Physics Letters, vol. 95, no. 6, 2009. View at Publisher · View at Google Scholar
  150. S. Wang, B. M. Goh, K. K. Manga, Q. Bao, P. Yang, and K. P. Loh, “Graphene as atomic template and structural scaffold in the synthesis of graphene-organic hybrid wire with photovoltaic properties,” ACS Nano, vol. 4, no. 10, pp. 6180–6186, 2010. View at Publisher · View at Google Scholar
  151. C. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, and C. M. Li, “Layered graphene/quantum dots for photovoltaic devices,” Angewandte Chemie, vol. 49, no. 17, pp. 3014–3017, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. N. G. Shang, P. Papakonstantinou, M. McMullan et al., “Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes,” Advanced Functional Materials, vol. 18, no. 21, pp. 3506–3514, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. F. Schedin, A. K. Geim, S. V. Morozov et al., “Detection of individual gas molecules adsorbed on graphene,” Nature Materials, vol. 6, no. 9, pp. 652–655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  154. N. Mohanty and V. Berry, “Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents,” Nano Letters, vol. 8, no. 12, pp. 4469–4476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  156. D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H. S. P. Wong, “Device scaling limits of Si MOSFETs and their application dependencies,” Proceedings of the IEEE, vol. 89, no. 3, pp. 259–287, 2001. View at Google Scholar · View at Scopus
  157. G. Fiori and G. Iannaccone, “On the possibility of tunable-fap bilayer graphene FET,” IEEE Electron Device Letters, vol. 30, no. 3, pp. 261–264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. E. McCann, “Asymmetry gap in the electronic band structure of bilayer graphene,” Physical Review B, vol. 74, no. 16, 2006. View at Publisher · View at Google Scholar
  159. V. M. Pereira and A. H. Castro Neto, “Strain engineering of graphene's electronic structure,” Physical Review Letters, vol. 103, no. 4, Article ID 046801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  160. F. Guinea, M. I. Katsnelson, and A. K. Geim, “Energy gaps and a zero-field quantum hall effect in graphene by strain engineering,” Nature Physics, vol. 6, no. 1, pp. 30–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. N. Levy, S. A. Burke, K. L. Meaker et al., “Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles,” Science, vol. 329, no. 5991, pp. 544–547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, “Graphene nanomesh,” Nature Nanotechnology, vol. 5, no. 3, pp. 190–194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, top-gated graphene field-effect transistors,” Nature Nanotechnology, vol. 3, no. 11, pp. 654–659, 2008. View at Publisher · View at Google Scholar · View at Scopus
  164. Y. M. Lin, K. A. Jenkins, V. G. Alberto, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at giqahertz frequencies,” Nano Letters, vol. 9, no. 1, pp. 422–426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins et al., “100-GHz transistors from wafer-scale epitaxial graphene,” Science, vol. 327, no. 5966, p. 662, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. A. Luican, G. Li, and E. Y. Andrei, “Quantized Landau level spectrum and its density dependence in graphene,” Physical Review B, vol. 83, no. 4, article 041405, 2011. View at Publisher · View at Google Scholar
  167. C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, “Raman fingerprint of charged impurities in graphene,” Applied Physics Letters, vol. 91, no. 23, Article ID 233108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  168. S. H. Keshmiri, M. Rezaee-Roknabadi, and S. Ashok, “A novel technique for increasing electron mobility of indium-tin-oxide transparent conducting films,” Thin Solid Films, vol. 413, no. 1-2, pp. 167–170, 2002. View at Publisher · View at Google Scholar · View at Scopus
  169. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future,” Advanced Materials, vol. 12, no. 7, pp. 481–494, 2000. View at Publisher · View at Google Scholar · View at Scopus
  170. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nature Photonics, vol. 4, no. 5, pp. 297–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  171. B. J. Kim, M. A. Mastro, J. Hite, C. R. Eddy, and J. Kim, “Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes,” Optics Express, vol. 18, no. 22, pp. 23030–23034, 2010. View at Publisher · View at Google Scholar · View at Scopus
  172. S. Tongay, T. Schumann, X. Miao, B. R. Appleton, and A. F. Hebard, “Tuning Schottky diodes at the many-layer-graphene/semiconductor interface by doping,” Carbon, vol. 49, no. 6, pp. 2033–2038, 2011. View at Publisher · View at Google Scholar
  173. X. Li, H. Zhu, K. Wang et al., “Graphene-on-silicon schottky junction solar cells,” Advanced Materials, vol. 22, no. 25, pp. 2743–2748, 2010. View at Publisher · View at Google Scholar
  174. K. Ihm, J. T. Lim, K.-J. Lee et al., “Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell,” Applied Physics Letters, vol. 97, no. 3, article 032113, 2010. View at Publisher · View at Google Scholar
  175. Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L. J. Li, and J. Kong, “Work function engineering of graphene electrode via chemical doping,” ACS Nano, vol. 4, no. 5, pp. 2689–2694, 2010. View at Publisher · View at Google Scholar · View at Scopus
  176. Y. H. Ng, I. V. Lightcap, K. Goodwin, M. Matsumura, and P. V. Kamat, “To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films?” Journal of Physical Chemistry Letters, vol. 1, no. 15, pp. 2222–2227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  177. M. Choe, B. H. Lee, G. Jo et al., “Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes,” Organic Electronics, vol. 11, no. 11, pp. 1864–1869, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. G. Jo, S.-I. Na, S.-H. Oh et al., “Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure,” Applied Physics Letters, vol. 97, no. 21, 2010. View at Publisher · View at Google Scholar
  179. L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS Nano, vol. 4, no. 5, pp. 2865–2873, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. Q. Liu, Z. Liu, X. Zhong et al., “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Advanced Functional Materials, vol. 19, no. 6, pp. 894–904, 2009. View at Google Scholar
  181. Z. Liu, D. He, Y. Wang, H. Wu, and J. Wang, “Graphene doping of P3HT:PCBM photovoltaic devices,” Synthetic Metals, vol. 160, no. 9-10, pp. 1036–1039, 2010. View at Publisher · View at Google Scholar
  182. Y. Li, Y. Hu, Y. Zhao et al., “An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics,” Advanced Materials, vol. 23, no. 6, pp. 776–780, 2011. View at Publisher · View at Google Scholar
  183. M. Liang and L. Zhi, “Graphene-based electrode materials for rechargeable lithium batteries,” Journal of Materials Chemistry, vol. 19, no. 33, pp. 5871–5878, 2009. View at Publisher · View at Google Scholar
  184. M. Pumera, “Electrochemistry of gaphene: new horizons for sensing and energy storage,” Chemical Record, vol. 9, no. 4, pp. 211–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  185. C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene,” Analytical Chemistry, vol. 81, no. 6, pp. 2378–2382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  186. S. Alwarappan, A. Erdem, C. Liu, and C. Z. Li, “Probing the electrochemical properties of graphene nanosheets for biosensing applications,” Journal of Physical Chemistry C, vol. 113, no. 20, pp. 8853–8857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  187. Y. Wang, Y. Li, L. Tang, J. Lu, and J. Li, “Application of graphene-modified electrode for selective detection of dopamine,” Electrochemistry Communications, vol. 11, no. 4, pp. 889–892, 2009. View at Publisher · View at Google Scholar
  188. M. Zhou, Y. Zhai, and S. Dong, “Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide,” Analytical Chemistry, vol. 81, no. 14, pp. 5603–5613, 2009. View at Publisher · View at Google Scholar
  189. J. Kong, N. R. Franklin, C. Zhou et al., “Nanotube molecular wires as chemical sensors,” Science, vol. 287, no. 5453, pp. 622–625, 2000. View at Publisher · View at Google Scholar · View at Scopus
  190. J. Sippel-Oakley, H. T. Wang, B. S. Kang et al., “Carbon nanotube films for room temperature hydrogen sensing,” Nanotechnology, vol. 16, no. 10, pp. 2218–2221, 2005. View at Publisher · View at Google Scholar · View at Scopus
  191. A. Star, T. R. Han, V. Joshi, J. C. P. Gabriel, and G. Grüner, “Nanoelectronic carbon dioxide sensors,” Advanced Materials, vol. 16, no. 22, pp. 2049–2052, 2004. View at Publisher · View at Google Scholar · View at Scopus
  192. R. Arsat, M. Breedon, M. Shafiei et al., “Graphene-like nano-sheets for surface acoustic wave gas sensor applications,” Chemical Physics Letters, vol. 467, no. 4–6, pp. 344–347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  193. Y. Dan, Y. Lu, N. J. Kybert, Z. Luo, and A. T. C. Johnson, “Intrinsic response of graphene vapor sensors,” Nano Letters, vol. 9, no. 4, pp. 1472–1475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  194. J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano, vol. 3, no. 2, pp. 301–306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  195. G. Lu, L. E. Ocola, and J. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Applied Physics Letters, vol. 94, no. 8, 2009. View at Publisher · View at Google Scholar
  196. M. Qazi, T. Vogt, and G. Koley, “Trace gas detection using nanostructured graphite layers,” Applied Physics Letters, vol. 91, no. 23, 2007. View at Publisher · View at Google Scholar
  197. J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, and P. E. Sheehan, “Reduced graphene oxide molecular sensors,” Nano Letters, vol. 8, no. 10, pp. 3137–3140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  198. Z. M. Ao, J. Yang, S. Li, and Q. Jiang, “Enhancement of CO detection in Al doped graphene,” Chemical Physics Letters, vol. 461, no. 4–6, pp. 276–279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  199. Y.-H. Zhang, Y.-B. Chen, K.-G. Zhou et al., “Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study,” Nanotechnology, vol. 20, no. 18, article 185504, 2009. View at Publisher · View at Google Scholar
  200. L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, and J. Li, “Preparation, structure, and electrochemical properties of reduced graphene sheet films,” Advanced Functional Materials, vol. 19, no. 17, pp. 2782–2789, 2009. View at Publisher · View at Google Scholar
  201. C. E. Banks, M. R. Moore, T. J. Davies, and R. G. Compton, “Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes,” Chemical Communications, vol. 10, no. 16, pp. 1804–1805, 2004. View at Publisher · View at Google Scholar · View at Scopus
  202. X. Kang, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “A graphene-based electrochemical sensor for sensitive detection of paracetamol,” Talanta, vol. 81, no. 3, pp. 754–759, 2010. View at Publisher · View at Google Scholar · View at Scopus
  203. C. Fu, W. Yang, X. Chen, and D. G. Evans, “Direct electrochemistry of glucose oxidase on a graphite nanosheet-Nafion composite film modified electrode,” Electrochemistry Communications, vol. 11, no. 5, pp. 997–1000, 2009. View at Publisher · View at Google Scholar · View at Scopus
  204. A. J. Patil, J. L. Vickery, T. B. Scott, and S. Mann, “Aqueous stabilization and self-assembly of craphene sheets into layered bio-nanocomposites using DNA,” Advanced Materials, vol. 21, no. 31, pp. 3159–3164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  205. Y. Ohno, K. Maehashi, Y. Yamashiro, and K. Matsumoto, “Electrolyte-gated graphene field-effect transistors for detecting ph and protein adsorption,” Nano Letters, vol. 9, no. 9, pp. 3318–3322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  206. Y. Ohno, K. Maehashi, and K. Matsumoto, “Label-free biosensors based on aptamer-modified graphene field-effect transistors,” Journal of the American Chemical Society, vol. 132, no. 51, pp. 18012–18013, 2010. View at Publisher · View at Google Scholar · View at Scopus