Table of Contents
ISRN Cardiology
Volume 2012, Article ID 501894, 7 pages
http://dx.doi.org/10.5402/2012/501894
Research Article

MMP-2 and sTNF-R1 Variability in Patients with Essential Hypertension: 1-Year Follow-Up Study

1Cardiocirculatory Unit, Research Center, Hospital Universitario y Politécnico La Fe, 46009 Valencia, Spain
2Internal Medicine, Hospital Universitario y Politécnico La Fe, 46009 Valencia, Spain
3Cardiology Unit, Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
4Cardiology Unit, Hospital Universitario y Politécnico La Fe, 46009 Valencia, Spain
5Cardiology Unit, Hospital San Francesc de Borja, 46702 Gandía, Spain
6Cell Biology and Pathology Unit, Research Center, Hospital Universitario y Politécnico La Fe, 46009 Valencia, Spain

Received 27 July 2012; Accepted 15 August 2012

Academic Editors: F. Quaini and F. Russell

Copyright © 2012 Núria Carpena et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Schwartzkopff, W. Motz, M. Vogt, and B. E. Strauer, “Heart failure on the basis of hypertension,” Circulation, vol. 87, no. 5, pp. IV66–IV72, 1993. View at Google Scholar · View at Scopus
  2. J. Díez and E. D. Frohlich, “A translational approach to hypertensive heart disease,” Hypertension, vol. 55, no. 1, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Fortuño, S. Ravassa, A. Fortuño, G. Zalba, and J. Díez, “Cardiomyocyte apoptotic cell death in arterial hypertension: mechanisms and potential management,” Hypertension, vol. 38, no. 6, pp. 1406–1412, 2001. View at Google Scholar · View at Scopus
  4. S. A. Cook and P. A. Poole-Wilson, “Cardiac myocyte apoptosis,” European Heart Journal, vol. 20, no. 22, pp. 1619–1629, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. V. P. M. Van Empel, A. T. A. Bertrand, L. Hofstra, H. J. Crijns, P. A. Doevendans, and L. J. De Windt, “Myocyte apoptosis in heart failure,” Cardiovascular Research, vol. 67, no. 1, pp. 21–29, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Rauchhaus, W. Doehner, D. P. Francis et al., “Plasma cytokine parameters and mortality in patients with chronic heart failure,” Circulation, vol. 102, no. 25, pp. 3060–3067, 2000. View at Google Scholar · View at Scopus
  7. A. Deswal, N. J. Petersen, A. M. Feldman, J. B. Young, B. G. White, and D. L. Mann, “Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone Trial (VEST),” Circulation, vol. 103, no. 16, pp. 2055–2059, 2001. View at Google Scholar · View at Scopus
  8. R. Ferrari, T. Bachetti, R. Confortini et al., “Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure,” Circulation, vol. 92, no. 6, pp. 1479–1486, 1995. View at Google Scholar · View at Scopus
  9. M. Valgimigli, C. Ceconi, P. Malagutti et al., “Tumor necrosis factor-α receptor 1 is a major predictor of mortality and new-onset heart failure in patients with acute myocardial infarction: the cytokine-activation and long-term prognosis in myocardial infarction (C-ALPHA) study,” Circulation, vol. 111, no. 7, pp. 863–870, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Roselló-Lletí, M. Rivera, L. Martínez-Dolz et al., “Inflammatory activation and left ventricular mass in essential hypertension,” American Journal of Hypertension, vol. 22, no. 4, pp. 444–450, 2009. View at Publisher · View at Google Scholar
  11. A. S. Kalogeropoulos, S. Tsiodras, A. G. Rigopoulos et al., “Novel association patterns of cardiac remodeling markers in patients with essential hypertension and atrial fibrillation,” BMC Cardiovascular Disorders, vol. 11, Article ID Article number77, p. 77, 2011. View at Publisher · View at Google Scholar
  12. J. Díez, “Mechanisms of cardiac fibrosis in hypertension.,” Journal of Clinical Hypertension, vol. 9, no. 7, pp. 546–550, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. B. López, A. González, R. Querejeta, M. Larman, and J. Díez, “Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure,” Journal of the American College of Cardiology, vol. 48, no. 1, pp. 89–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. González, B. López, S. Ravassa et al., “Biochemical markers of myocardial remodelling in hypertensive heart disease,” Cardiovascular Research, vol. 81, no. 3, pp. 509–518, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. F. G. Spinale, “Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function,” Physiological Reviews, vol. 87, no. 4, pp. 1285–1342, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Matsui, J. Morimoto, and T. Uede, “Role of matricellular proteins in cardiac tissue remodeling after myocardial infarction,” World Journal of Biological Chemistry, vol. 1, no. 5, pp. 69–80, 2010. View at Publisher · View at Google Scholar
  17. R. Martos, J. Baugh, M. Ledwidge et al., “Diagnosis of heart failure with preserved ejection fraction: improved accuracy with the use of markers of collagen turnover,” European Journal of Heart Failure, vol. 11, no. 2, pp. 191–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Martos, J. Baugh, M. Ledwidge et al., “Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction,” Circulation, vol. 115, no. 7, pp. 888–895, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Shirakabe, K. Asai, N. Hata et al., “Clinical significance of matrix metalloproteinase (MMP)-2 in patients with acute heart failure,” International Heart Journal, vol. 51, no. 6, pp. 404–410, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. George, S. Patal, D. Wexler, A. Roth, D. Sheps, and G. Keren, “Circulating matrix metalloproteinase-2 but not matrix metalloproteinase-3, matrix metalloproteinase-9, or tissue inhibitor of metalloproteinase-1 predicts outcome in patients with congestive heart failure,” American Heart Journal, vol. 150, no. 3, pp. 484–487, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. O. S. Dhillon, S. Q. Khan, H. K. Narayan et al., “Matrix metalloproteinase-2 predicts mortality in patients with acute coronary syndrome,” Clinical Science, vol. 118, no. 4, pp. 249–257, 2010. View at Publisher · View at Google Scholar
  22. E. Roselló-Lletí, J. R. Calabuig, P. Morillas et al., “Variability of NT-proBNP and its relationship with inflammatory status in patients with stable essential hypertension: a 2-year follow-up study,” PLoS ONE, vol. 7, no. 2, Article ID e31189, 2012. View at Publisher · View at Google Scholar
  23. V. Paget, L. Legedz, N. Gaudebout et al., “N-terminal pro-brain natriuretic peptide: a powerful predictor of mortality in hypertension,” Hypertension, vol. 57, no. 4, pp. 702–709, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. V. Chobanian, G. L. Bakris, H. R. Black et al., “The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report,” Journal of the American Medical Association, vol. 289, no. 19, pp. 2560–2572, 2003. View at Publisher · View at Google Scholar
  25. M. H. Olsen, K. Wachtell, C. Tuxen et al., “N-terminal pro-brain natriuretic peptide predicts cardiovascular events in patients with hypertension and left ventricular hypertrophy: a LIFE study,” Journal of Hypertension, vol. 22, no. 8, pp. 1597–1604, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. S. Levey, J. P. Bosch, J. B. Lewis, T. Greene, N. Rogers, and D. Roth, “A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation,” Annals of Internal Medicine, vol. 130, no. 6, pp. 461–470, 1999. View at Google Scholar · View at Scopus
  27. N. B. Schiller, P. M. Shah, M. Crawford et al., “Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms.,” Journal of the American Society of Echocardiography, vol. 2, no. 5, pp. 358–367, 1989. View at Google Scholar · View at Scopus
  28. R. B. Devereux, D. R. Alonso, and E. M. Lutas, “Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings,” American Journal of Cardiology, vol. 57, no. 6, pp. 450–458, 1986. View at Google Scholar · View at Scopus
  29. R. M. Lang, M. Bierig, R. B. Devereux et al., “Recommendations for chamber quantification: a report from the American Society of Echocardiography's guidelines and standards committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology,” Journal of the American Society of Echocardiography, vol. 18, no. 12, pp. 1440–1463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” The Lancet, vol. 1, no. 8476, pp. 307–310, 1986. View at Google Scholar · View at Scopus
  31. J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies,” Statistical Methods in Medical Research, vol. 8, no. 2, pp. 135–160, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. A. González, M. A. Fortuño, R. Querejeta et al., “Cardiomyocyte apoptosis in hypertensive cardiomyopathy,” Cardiovascular Research, vol. 59, no. 3, pp. 549–562, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Yamamoto, K. I. Sawada, H. Shimomura, K. Kawamura, and T. N. James, “On the nature of cell death during remodeling of hypertrophied human myocardium,” Journal of Molecular and Cellular Cardiology, vol. 32, no. 1, pp. 161–175, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Olivetti, M. Melissari, T. Balbi et al., “Myocyte cellular hypertrophy is responsible for ventricular remodelling in the hypertrophied heart of middle aged individuals in the absence of cardiac failure,” Cardiovascular Research, vol. 28, no. 8, pp. 1199–1208, 1994. View at Google Scholar · View at Scopus
  35. R. S. Friese, F. Rao, S. Khandrika et al., “Matrix metalloproteinases: discrete elevations in essential hypertension and hypertensive end-stage renal disease,” Clinical and Experimental Hypertension, vol. 31, no. 7, pp. 521–533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. S. Moon, D. H. Kim, and D. K. Song, “Serum tumor necrosis factor-α levels and components of the metabolic syndrome in obese adolescents,” Metabolism, vol. 53, no. 7, pp. 863–867, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Zervoudaki, E. Economou, C. Pitsavos et al., “The effect of Ca2+ channel antagonists on plasma concentrations of matrix metalloproteinase-2 and -9 in essential hypertension,” American Journal of Hypertension, vol. 17, no. 3, pp. 273–276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Derosa, P. Maffioli, I. Ferrari et al., “Different actions of losartan and ramipril on adipose tissue activity and vascular remodeling biomarkers in hypertensive patients,” Hypertension Research, vol. 34, no. 1, pp. 145–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Ohtsuka, M. Hamada, G. Hiasa et al., “Effect of beta-blockers on circulating levels of inflammatory and anti-inflammatory cytokines in patients with dilated cardiomyopathy,” Journal of the American College of Cardiology, vol. 37, no. 2, pp. 412–417, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Arozal, F. R. Sari, K. Watanabe et al., “Carvedilol-afforded protection against daunorubicin-induced cardiomyopathic rats in vivo: effects on cardiac fibrosis and hypertrophy,” ISRN Pharmacology, vol. 2011, Article ID 430549, 2011. View at Publisher · View at Google Scholar
  41. P. Fiorina, E. Astorri, R. Albertini et al., “Soluble antiapoptotic molecules and immune activation in chronic heart failure and unstable angina pectoris,” Journal of Clinical Immunology, vol. 20, no. 2, pp. 101–106, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Kinugawa, M. Kato, K. Yamamoto et al., “Proinflammatory cytokine activation is linked to apoptotic mediator, soluble fas level in patients with chronic heart failure,” International Heart Journal, vol. 53, no. 3, pp. 182–186, 2012. View at Publisher · View at Google Scholar