Table of Contents Author Guidelines Submit a Manuscript
ISRN Veterinary Science
Volume 2012 (2012), Article ID 512848, 7 pages
Research Article

Cloning, Sequencing and In Silico Analysis of Omp C of Salmonella Typhimurium

1Department of Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, India
2Animal Biotechnology Center, Department of Veterinary Physiology & Biochemistry, G.B. Pant University of Agriculture & Technology, Pantnagar 263145, India

Received 22 November 2011; Accepted 26 December 2011

Academic Editor: H. Akashi

Copyright © 2012 Richa Jha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Salmonella Typhimurium is an important pathogen having a broad host range. In human population it causes mostly gastroenteritis but there are reports in which it was found to be responsible to cause several lethal diseases like endocarditis and meningitis. Poultry products are the major sources of this organism in India as these are consumed at various stages of cooking. The available vaccines have their own limitations such as short-term immunity. Outer membrane proteins have shown some promising potential, so in the present study Omp C of Salmonella Typhimurium was cloned and sequenced to explore the possibility of development of r-DNA vaccine against Salmonella Typhimurium for poultry. The sequence of Omp C was studied for antigenic indexing, epitope mapping, and MHC mapping using various bioinformatic tools. The ORF analysis revealed a complete coding region of approximately 1000 bp. Five major and 13 minor B-cell epitopes were identified having an antigenic index of 1.7. The sequences also showed major histocompatibility complex (MHC) class I and class II binding region indicating a potential of eliciting cell-mediated immune response. The findings indicate that Omp C may be proven as promising candidate for development of r-DNA vaccine against Salmonella Typhimurium.