Research Article

New Di- and Triorganotin(IV) Tyrosylalaninates as Models for Metal—Protein Interactions: Synthesis, Structural Characterization, and Potentiometric Studies of Tyrosylalanine, Glycyltyrosine, and Glycylisoleucine with Di- and Trimethyltin(IV) Moieties in Aqueous Medium

Table 3

119Sn Mössbauer spectral data (80 K) of di- and triorganotin(IV) tyrosylalaninatesa.

Compound no.QS (mm s−1)IS (mm s−1)ρ (QS/IS) 𝜏 1 (L) 𝜏 2 (R)∠C–Sn–Cb (°)

Me2Sn(Tyr-Ala)3.281.232.671.091.42135.67
n-Bu2Sn(Tyr-Ala)2.581.112.321.311.59115.81
n-Oct2Sn(Tyr-Ala)3.411.392.450.971.07131.62
Ph2Sn(Tyr-Ala)2.350.912.581.272.0114.85
Me3Sn(HTyr-Ala)3.321.262.631.01.22136.86
Ph3Sn(HTyr-Ala)2.130.972.201.081.20107.01

aQS: quadruple splitting; IS: isomer shift relative to BaSnO3 and tin foil (splitting: 2.52 mm s−1); 𝜏 1 (L): half line-width left doublet component; 𝜏 2 (R): half line-width right doublet component.
bParish’s relationship [35]: QS = 4[R][1–(3/4)sin22θ]1/2, where ∠ C –Sn–C = (180–2θ)° and [R] is the partial quadruple splitting (p.q.s.). For alkyl and phenyl groups, R = −1.03 and −0.95 mms−1, respectively [35, 44].