Table of Contents
ISRN Ecology
Volume 2012, Article ID 521582, 7 pages
http://dx.doi.org/10.5402/2012/521582
Research Article

Selected Metals in Various Fractions of Soil and Fungi in a Swedish Forest

1Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala, Sweden
2Department of Ecology, Zhytomyr State Technological University, 103 Cherniakhovsky Street, 10005 Zhytomyr, Ukraine

Received 14 April 2012; Accepted 11 May 2012

Academic Editors: S. Loppi and P. Rautio

Copyright © 2012 Mykhailo Vinichuk. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Read and J. Perez-Moreno, “Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance?” New Phytologist, vol. 157, no. 3, pp. 475–492, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. R. Leake and D. J. Read, “Mycorrhizal fungi in terrestrial habitats,” in The Mycota IV: Environmental and Microbial Relationship, D. T. Wicklow and B. Söderström, Eds., pp. 281–301, Springer, Berlin, Germany, 1997. View at Google Scholar
  3. S. E. Smith and D. J. Read, Mycorrhizal Symbiosis, Academic Press, London, UK, 2nd edition, 1997.
  4. T. I. Burgess, N. Malajczuk, and T. S. Grove, “The ability of 16 ectomycorrhizal fungi to increase growth and phosphorus uptake of Eucalyptus globulus Labill. and E. diversicolor F. Muell.,” Plant and Soil, vol. 153, no. 2, pp. 155–164, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Stijve and R. Besson, “Mercury, cadmium, lead and selenium content of mushroom species belonging to the genus Agaricus,” Chemosphere, vol. 5, no. 2, pp. 151–158, 1976. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Vetter, I. Siller, and Z. Horváth, “Zinc content of sporocarps of basidiomycetous fungi,” Mycologia, vol. 89, no. 3, pp. 481–483, 1997. View at Google Scholar · View at Scopus
  7. D. Blaudez, B. Botton, and M. Chalot, “Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus,” Microbiology, vol. 146, no. 5, pp. 1109–1117, 2000. View at Google Scholar · View at Scopus
  8. M. Blanuša, A. Kučak, V. M. Varnai, and M. M. Sarić, “Uptake of cadmium, copper, iron, manganese, and zinc in mushrooms (Boletaceae) from Croatian forest soil,” Journal of AOAC International, vol. 84, no. 6, pp. 1964–1971, 2001. View at Google Scholar · View at Scopus
  9. A. R. Byrne, V. Ravnik, and L. Kosta, “Trace element concentrations in higher fungi,” Science of the Total Environment, vol. 6, no. 1, pp. 65–78, 1976. View at Publisher · View at Google Scholar · View at Scopus
  10. N. W. Lepp, S. C. S. Harrison, and B. G. Morrell, “A role for Amanita muscaria L. in the circulation of cadmium and vanadium in a non-polluted woodland,” Environmental Geochemistry and Health, vol. 9, no. 3-4, pp. 61–64, 1987. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Svoboda, K. Zimmermannová, and P. Kalač, “Concentrations of mercury, cadmium, lead and copper in fruiting bodies of edible mushrooms in an emission area of a copper smelter and a mercury smelter,” Science of the Total Environment, vol. 246, no. 1, pp. 61–67, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Collin-Hansen, K. E. Yttri, R. A. Andersen, B. O. Berthelsen, and E. Steinnes, “Mushrooms from two metal-contaminated areas in Norway: occurrence of metals and metallothionein-like proteins,” Geochemistry: Exploration, Environment, Analysis, vol. 2, no. 2, pp. 121–130, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Rudawska and T. Leski, “Trace elements in fruiting bodies of ectomycorrhizal fungi growing in Scots pine (Pinus sylvestris L.) stands in Poland,” Science of the Total Environment, vol. 339, no. 1-3, pp. 103–115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. C. C. Elekes, G. Busuioc, and G. Ionita, “The bioaccumulation of some heavy metals in the fruiting body of wild growing mushrooms,” Notulae Botanicae Horti Agrobotanici Cluj-Napoca, vol. 38, no. 2, pp. 147–151, 2010. View at Google Scholar · View at Scopus
  15. A. Brzostowski, G. Jarzyńska, A. K. Kojta, D. Wydmańska, and J. Falandysz, “Variations in metal levels accumulated in Poison Pax (Paxillus involutus) mushroom collected at one site over four years,” Journal of Environmental Science and Health A, vol. 46, no. 6, pp. 581–588, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. A. Pérez, S. S. Farías, A. M. Strobl et al., “Levels of essential and toxic elements in Porphyra columbina and Ulva sp. from San Jorge Gulf, Patagonia Argentina,” Science of the Total Environment, vol. 376, no. 1-3, pp. 51–59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. A. Campos, N. A. Tejera, and C. J. Sánchez, “Substrate role in the accumulation of heavy metals in sporocarps of wild fungi,” BioMetals, vol. 22, no. 5, pp. 835–841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. B. O. Berthelsen, R. A. Olsen, and E. Steinnes, “Ectomycorrhizal heavy metal accumulation as a contributing factor to heavy metal levels in organic surface soils,” Science of the Total Environment, vol. 170, no. 1-2, pp. 141–149, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. R. Holan and B. Volesky, “Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents,” Applied Biochemistry and Biotechnology, vol. 53, no. 2, pp. 133–146, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. T. R. Horton and T. D. Bruns, “The molecular revolution in ectomycorrhizal ecology: peeking into the black-box,” Molecular Ecology, vol. 10, no. 8, pp. 1855–1871, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Bååth, “Soil fungal biomass after clear-cutting of a pine forest in central sweden,” Soil Biology and Biochemistry, vol. 12, no. 5, pp. 495–500, 1980. View at Google Scholar · View at Scopus
  22. U. Thomet, E. Vogel, and U. Krähenbühl, “The uptake of cadmium and zinc by mycelia and their accumulation in mycelia and fruiting bodies of edible mushrooms,” European Food Research and Technology, vol. 209, no. 5, pp. 317–324, 1999. View at Google Scholar · View at Scopus
  23. L. Lundin, E. Lode, J. Stendahl, P. A. Merklund, L. Björkvald, and A. Thorstensson, “Soils and site types in the Forsmark area,” SKB-Rapport R-04-08, Sv. Kärnbränslehantering, 2004. View at Google Scholar
  24. M. M. Vinichuk and K. J. Johanson, “Accumulation of 137Cs by fungal mycelium in forest ecosystems of Ukraine,” Journal of Environmental Radioactivity, vol. 64, no. 1, pp. 27–43, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. G. R. Gobran and S. Clegg, “A conceptual model for nutrient availability in the mineral soil-root system,” Canadian Journal of Soil Science, vol. 76, no. 2, pp. 125–131, 1996. View at Google Scholar · View at Scopus
  26. I. Rodushkin, E. Engström, D. Sörlin, and D. Baxter, “Levels of inorganic constituents in raw nuts and seeds on the Swedish market,” Science of the Total Environment, vol. 392, no. 2-3, pp. 290–304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Alonso, M. A. García, M. Pérez-López, and M. J. Melgar, “The concentrations and bioconcentration factors of copper and zinc in edible mushrooms,” Archives of Environmental Contamination and Toxicology, vol. 44, no. 2, pp. 180–188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Kalac, J. Burda, and I. Staskova, “Concentrations of lead, cadmium, mercury and copper in mushrooms in the vicinity of a lead smelter,” Science of the Total Environment, vol. 105, pp. 109–119, 1991. View at Google Scholar · View at Scopus
  29. P. Villaverde, D. Gondar, J. Antelo, R. López, S. Fiol, and F. Arce, “Influence of pH on copper, lead and cadmium binding by an ombrotrophic peat,” European Journal of Soil Science, vol. 60, no. 3, pp. 377–385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Radulescu, C. Stihi, V. G. Cimpoca, I. V. Popescu, G. Busuioc, and A. I. Gheboianu, “Evaluation of heavy metals content in edible mushrooms by microwave digestion and Flame Atomic Absorption Spectrometry,” Scientific Study and Research, vol. 12, no. 2, pp. 155–164, 2011. View at Google Scholar · View at Scopus
  31. E. Krznaric, J. Wevers, and J. Colpaert, “Heavy metal tolerant fungi play a key role in the protection of pines against combined Zn-Cd toxicity,” in Proceedings of the 21st New Phytologist Symposium, The Ecology of Ectomycorrhizal Fungi, Montpellier, France, December 2008, http://www.newphytologist.org/mycorrhizal/21stNPS.pdf.