Table of Contents
ISRN Endocrinology
Volume 2012 (2012), Article ID 536905, 11 pages
http://dx.doi.org/10.5402/2012/536905
Review Article

Recent Advances in Obesity: Genetics and Beyond

1Division of Pediatric Nephrology, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
2Division of Neuroscience, Oregon National Primate Research Center, Department of Public Health & Preventive Medicine, Oregon Health & Science University, Portland, OR 97239, USA

Received 11 November 2011; Accepted 19 December 2011

Academic Editors: C. Anderwald, A. Hishinuma, and J.-F. Tanti

Copyright © 2012 Wai W. Cheung and Peizhong Mao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Owyang, “Recent advances and future research directions in neurogastroenterology and endocrinology recommendations of the National Commission on Digestive Diseases,” Neurogastroenterology and Motility, vol. 20, no. 11, pp. 1189–1203, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. M. Garaulet and J. A. Madrid, “Chronobiological aspects of nutrition, metabolic syndrome and obesity,” Advanced Drug Delivery Reviews, vol. 62, no. 9-10, pp. 967–978, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. P. Kopelman, “Health risks associated with overweight and obesity,” Obesity Reviews, vol. 8, no. 1, pp. 13–17, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. A. Must, J. Spadano, E. H. Coakley, A. E. Field, G. Colditz, and W. H. Dietz, “The disease burden associated with overweight and obesity,” The Journal of the American Medical Association, vol. 282, no. 16, pp. 1523–1529, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. E. E. Calle, C. Rodriguez, K. Walker-Thurmond, and M. J. Thun, “Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults,” The New England Journal of Medicine, vol. 348, no. 17, pp. 1625–1638, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. http://www.who.int/mediacentre/factsheets/fs311/en/index.html.
  7. A. J. Stunkard, T. T. Foch, and Z. Hrubec, “A twin study of human obesity,” The Journal of the American Medical Association, vol. 256, no. 1, pp. 51–54, 1986. View at Google Scholar · View at Scopus
  8. J. V. B. Hjelmborg, C. Fagnani, K. Silventoinen et al., “Genetic influences on growth traits of BMI: a longitudinal study of adult twins,” Obesity, vol. 16, no. 4, pp. 847–852, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. A. J. Walley, J. E. Asher, and P. Froguel, “The genetic contribution to non-syndromic human obesity,” Nature Reviews Genetics, vol. 10, no. 7, pp. 431–442, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. D. Heber, “An integrative view of obesity,” American Journal of Clinical Nutrition, vol. 91, no. 1, pp. 280S–283S, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. J. R. Speakman, “Thrifty genes for obesity and the metabolic syndrome—time to call off the search?” Diabetes and Vascular Disease Research, vol. 3, no. 1, pp. 7–11, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. C. Bouchard, “The biological predisposition to obesity: beyond the thrifty genotype scenario,” International Journal of Obesity, vol. 31, no. 9, pp. 1337–1339, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. S. Via and D. J. Hawthorne, “Back to the future: genetic correlations, adaptation and speciation,” Genetica, vol. 123, no. 1-2, pp. 147–156, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. J. Stunkard, T. I. A. Sorensen, and G. Hanis, “An adoption study of human obesity,” The New England Journal of Medicine, vol. 314, no. 4, pp. 193–198, 1986. View at Google Scholar · View at Scopus
  15. M. Turula, J. Kaprio, A. Rissanen, and M. Koskenvuo, “Body weight in the Finnish Twin Cohort,” Diabetes Research and Clinical Practice, vol. 10, supplement 1, pp. S33–S36, 1990. View at Publisher · View at Google Scholar · View at Scopus
  16. H. K. Tabor, N. J. Risch, and R. M. Myers, “Candidate-gene approaches for studying complex genetic traits: practical considerations,” Nature Reviews Genetics, vol. 3, no. 5, pp. 391–397, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. C. G. Bell, A. J. Walley, and P. Froguel, “The genetics of human obesity,” Nature Reviews Genetics, vol. 6, no. 3, pp. 221–234, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. P. Kristensen, M. E. Judge, L. Thim et al., “Hypothalamic CART is a new anorectic peptide regulated by leptin,” Nature, vol. 393, no. 6680, pp. 72–76, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. E. Miraglia Del Giudice, N. Santoro, G. Cirillo, L. D'Urso, R. Di Toro, and L. Perrone, “Mutational screening of the CART gene in obese children: identifying a mutation (Leu34Phe) associated with reduced resting energy expenditure and cosegregating with obesity phenotype in a large family,” Diabetes, vol. 50, no. 9, pp. 2157–2160, 2001. View at Google Scholar · View at Scopus
  20. D. G. E. Miraglia, N. Santoro, P. Fiumani, G. Dominguez, M. J. Kuhar, and L. Perrone, “Adolescents carrying a missense mutation in the cart gene exhibit increased anxiety and depression,” Depression and Anxiety, vol. 23, no. 2, pp. 90–92, 2006. View at Google Scholar
  21. P. Mao, “Potential antidepressant role of neurotransmitter CART: implications for mental disorders,” Depression Research and Treatment, vol. 2011, Article ID 762139, 11 pages, 2011. View at Google Scholar
  22. K. S. Vimaleswaran and R. J. Loos, “Progress in the genetics of common obesity and type 2 diabetes,” Expert Reviews in Molecular Medicine, vol. 12, article e7, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. F. Zhang, M. B. Basinski, J. M. Beals et al., “Crystal structure of the obese protein leptin-E100,” Nature, vol. 387, no. 6629, pp. 206–209, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. S. Margetic, C. Gazzola, G. G. Pegg, and R. A. Hill, “Leptin: a review of its peripheral actions and interactions,” International Journal of Obesity, vol. 26, no. 11, pp. 1407–1433, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. C. T. Montague, I. S. Farooqi, J. P. Whitehead et al., “Congenital leptin deficiency is associated with severe early-onset obesity in humans,” Nature, vol. 387, no. 6636, pp. 903–908, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. A. Strobel, T. Issad, L. Camoin, M. Ozata, and A. D. Strosberg, “A leptin missense mutation associated with hypogonadism and morbid obesity,” Nature genetics, vol. 18, no. 3, pp. 213–215, 1998. View at Google Scholar · View at Scopus
  27. P. Fischer-Posovszky, J. von Schnurbein, B. Moepps et al., “A new missense mutation in the leptin gene causes mild obesity and hypogonadism without affecting T cell responsiveness,” The Journal of Clinical Endocrinology & Metabolism, vol. 95, no. 6, pp. 2836–2840, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. K. Clément, C. Vaisse, N. Lahlou et al., “A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction,” Nature, vol. 392, no. 6674, pp. 398–401, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. T. Rankinen, A. Zuberi, Y. C. Chagnon et al., “The human obesity gene map: the 2005 update,” Obesity, vol. 14, no. 4, pp. 529–644, 2006. View at Google Scholar
  30. G. J. Morton, D. E. Cummings, D. G. Baskin, G. S. Barsh, and M. W. Schwartz, “Central nervous system control of food intake and body weight,” Nature, vol. 443, no. 7109, pp. 289–295, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. E. G. Bochukova, N. Huang, J. Keogh et al., “Large, rare chromosomal deletions associated with severe early-onset obesity,” Nature, vol. 463, no. 7281, pp. 666–670, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. L. Perrone, P. Marzuillo, A. Grandone, and E. M. del Giudice, “Chromosome 16p11.2 deletions: another piece in the genetic puzzle of childhood obesity,” Italian Journal of Pediatrics, vol. 36, article 43, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. W. T. Gibson, I. S. Farooqi, M. Moreau et al., “Congenital leptin deficiency due to homozygosity for the Δ133G mutation: report of another case and evaluation of response to four years of leptin therapy,” The Journal of Clinical Endocrinology & Metabolism, vol. 89, no. 10, pp. 4821–4826, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. R. A. Norman, D. B. Thompson, T. Foroud et al., “Genomewide search for genes influencing percent body fat in Pima Indians: suggestive linkage at chromosome 11q21-q22,” The American Journal of Human Genetics, vol. 60, no. 1, pp. 166–173, 1997. View at Google Scholar · View at Scopus
  35. C. L. Saunders, B. D. Chiodini, P. Sham et al., “Meta-analysis of genome-wide linkage studies in BMI and obesity,” Obesity, vol. 15, no. 9, pp. 2263–2275, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. M. I. McCarthy, “Genomics, type 2 diabetes, and obesity,” The New England Journal of Medicine, vol. 363, no. 24, pp. 2339–2350, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. T. M. Frayling, N. J. Timpson, M. N. Weedon et al., “A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity,” Science, vol. 316, no. 5826, pp. 889–894, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. A. Scuteri, S. Sanna, W. M. Chen et al., “Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits,” PLoS genetics, vol. 3, no. 7, Article ID e115, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. C. Dina, D. Meyre, S. Gallina et al., “Variation in FTO contributes to childhood obesity and severe adult obesity,” Nature Genetics, vol. 39, no. 6, pp. 724–726, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. K. A. Fawcett and I. Barroso, “The genetics of obesity: FTO leads the way,” Trends in Genetics, vol. 26, no. 6, pp. 266–274, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. G. Stratigopoulos, S. L. Padilla, C. A. LeDuc et al., “Regulation of Fto/Ftm gene expression in mice and humans,” American Journal of Physiology, vol. 294, no. 4, pp. R1185–R1196, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. K. Wåhlén, E. Sjölin, and J. Hoffstedt, “The common rs9939609 gene variant of the fat mass- and obesity-associated gene FTO is related to fat cell lipolysis,” The Journal of Lipid Research, vol. 49, no. 3, pp. 607–611, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. C. Church, L. Moir, F. McMurray et al., “Overexpression of Fto leads to increased food intake and results in obesity,” Nature Genetics, vol. 42, no. 12, pp. 1086–1092, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. R. Fredriksson, “The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain,” Endocrinology, vol. 149, pp. 2062–2071, 2008. View at Google Scholar
  45. J. M. Gimble, “Circadian biology and sleep: missing links in obesity and metabolism,” Obesity Review, vol. 10, 2, pp. 1–5, 2009. View at Google Scholar
  46. T. J. Maures, J. H. Kurzer, and C. Carter-Su, “SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other,” Trends in Endocrinology and Metabolism, vol. 18, no. 1, pp. 38–45, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. G. Thorleifsson, G. B. Walters, D. F. Gudbjartsson et al., “Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity,” Nature Genetics, vol. 41, no. 1, pp. 18–24, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. C. J. Willer, E. K. Speliotes, R. J. F. Loos et al., “Six new loci associated with body mass index highlight a neuronal influence on body weight regulation,” Nature Genetics, vol. 41, no. 1, pp. 25–34, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. J. S. Beckmann, X. Estivill, and S. E. Antonarakis, “Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability,” Nature Reviews Genetics, vol. 8, no. 8, pp. 639–646, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. R. G. Walters, S. Jacquemont, A. Valsesia et al., “A new highly penetrant form of obesity due to deletions on chromosome 16p11.2,” Nature, vol. 463, no. 7281, pp. 671–675, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. C. Y. Cheng, W. H. L. Kao, N. Patterson et al., “Admixture mapping of 15,280 African Americans identifies obesity susceptibility loci on chromosomes 5 and X,” PLoS Genetics, vol. 5, no. 5, Article ID e1000490, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. S. Stone, V. Abkevich, and S. C. Hunt, “A major predisposition locus for severe obesity, at 4p15-p14,” The American Journal of Human Genetics, vol. 70, pp. 529–644, 2006. View at Google Scholar
  53. M. Ohman, L. Oksanen, and J. Kaprio, “Genomie-wide scan f obesity on Finish sibpairs reveals linkage to chromosome Xq24,” The Journal of Clinical Endocrinology & Metabolism, vol. 85, pp. 3188–3190, 2000. View at Google Scholar
  54. E. Suviolahti, L. J. Oksanen, M. Öhman et al., “The SLC6A14 gene shows evidence of association with obesity,” Journal of Clinical Investigation, vol. 112, no. 11, pp. 1762–1772, 2003. View at Publisher · View at Google Scholar
  55. S. F. Leibowitz and J. T. Alexander, “Hypothalamic serotonin in control of eating behavior, meal size, and body weight,” Biological Psychiatry, vol. 44, no. 9, pp. 851–864, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. P. S. Tarpey, F. L. Raymond, S. O'Meara et al., “Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor,” The American Journal of Human Genetics, vol. 80, no. 2, pp. 345–352, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. S. E. Wozniak, L. L. Gee, M. S. Wachtel, and E. E. Frezza, “Adipose tissue: the new endocrine organ?” Digestive Diseases and Sciences, vol. 54, no. 9, pp. 1847–1856, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. T. Aoyagi, S. Shimba, and M. Tezuka, “Characteristics of circadian gene expressions in mice white adipose tissue and 3T3-L1 adipocytes,” Journal of Health Science, vol. 51, no. 1, pp. 21–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. A. A. Ptitsyn, S. Zvonic, S. A. Conrad, L. K. Scott, R. L. Mynatt, and J. M. Gimble, “Circadian clocks are resounding in peripheral tissues,” PLoS Computational Biology, vol. 2, no. 3, Article ID e16, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. C. Gómez-Santos, P. Gómez-Abellán, J. A. Madrid et al., “Circadian rhythm of clock genes in human adipose explants,” Obesity, vol. 17, no. 8, pp. 1481–1485, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. S. Zvonic, Z. E. Floyd, R. L. Mynatt, and J. M. Gimble, “Circadian rhythms and the regulation of metabolic tissue function and energy homeostasis,” Obesity, vol. 15, no. 3, pp. 539–543, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. O. Froy, “Metabolism and circadian rhythms—implications for obesity,” Endocrine Reviews, vol. 31, no. 1, pp. 1–24, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. M. P. Antoch, E. J. Song, A. M. Chang et al., “Functional identification of the mouse circadian Clock gene by transgenic BAC rescue,” Cell, vol. 89, no. 4, pp. 655–667, 1997. View at Google Scholar · View at Scopus
  64. D. P. King, Y. Zhao, A. M. Sangoram et al., “Positional cloning of the mouse circadian clock gene,” Cell, vol. 89, no. 4, pp. 641–653, 1997. View at Google Scholar · View at Scopus
  65. F. W. Turek, C. Joshu, A. Kohsaka et al., “Obesity and metabolic syndrome in circadian clock mutant nice,” Science, vol. 308, no. 5724, pp. 1043–1045, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. B. Karlsson, A. Knutsson, and B. Lindahl, “Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27 485 people,” Occupational and Environmental Medicine, vol. 58, no. 11, pp. 747–752, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. K. O. Klein, K. A. Larmore, E. de Lancey, J. M. Brown, R. V. Considine, and S. G. Hassink, “Effect of obesity on estradiol level, and its relationship to leptin, bone maturation, and bone mineral density in children,” The Journal of Clinical Endocrinology & Metabolism, vol. 83, no. 10, pp. 3469–3475, 1998. View at Publisher · View at Google Scholar · View at Scopus
  68. H. Ando, H. Yanagihara, Y. Hayashi et al., “Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue,” Endocrinology, vol. 146, no. 12, pp. 5631–5636, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. B. O. Yildiz, M. A. Suchard, M. L. Wong, S. M. McCann, and J. Licinio, “Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 28, pp. 10434–10439, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. S. S. Puchalski, J. N. Green, and D. D. Rasmussen, “Melatonin effect on rat body weight regulation in response to high-fat diet at middle age,” Endocrine, vol. 21, no. 2, pp. 163–167, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. D. Huszar, C. A. Lynch, V. Fairchild-Huntress et al., “Targeted disruption of the melanocortin-4 receptor results in obesity in mice,” Cell, vol. 88, no. 1, pp. 131–141, 1997. View at Google Scholar · View at Scopus
  72. I. S. Farooqi, J. M. Keogh, G. S. H. Yeo, E. J. Lank, T. Cheetham, and S. O'Rahilly, “Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene,” The New England Journal of Medicine, vol. 348, no. 12, pp. 1085–1095, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. L. H. Larsen, S. M. Echwald, T. I.A. Sørensen, T. Andersen, B. S. Wulff, and O. Pedersen, “Prevalence of mutations and functional analyses of melanocortin 4 receptor variants identified among 750 men with juvenile-onset obesity,” The Journal of Clinical Endocrinology & Metabolism, vol. 90, no. 1, pp. 219–224, 2005. View at Publisher · View at Google Scholar · View at PubMed
  74. R. J. F. Loos, C. M. Lindgren, S. Li et al., “Common variants near MC4R are associated with fat mass, weight and risk of obesity,” Nature Genetics, vol. 40, no. 6, pp. 768–775, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. H. Krude, H. Biebermann, D. Schnabel et al., “Obesity due to proopiomelanocortin deficiency: three new cases and treatment trials with thyroid hormone and ACTH4-10,” The Journal of Clinical Endocrinology & Metabolism, vol. 88, no. 10, pp. 4633–4640, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. D. L. Marks, N. Ling, and R. D. Cone, “Role of the central melanocortin system in cachexia,” Cancer Research, vol. 61, no. 4, pp. 1432–1438, 2001. View at Google Scholar · View at Scopus
  77. W. Cheung, P. X. Yu, B. M. Little, R. D. Cone, D. L. Marks, and R. H. Mak, “Role of leptin and melanocortin signaling in uremia-associated cachexia,” Journal of Clinical Investigation, vol. 115, no. 6, pp. 1659–1665, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. W. W. Cheung, H. J. Kuo, S. Markison et al., “Peripheral administration of the melanocortin-4 receptor antagonist NBI-12i ameliorates uremia-associated cachexia in mice,” Journal of the American Society of Nephrology, vol. 18, no. 9, pp. 2517–2524, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. R. H. Mak, W. Cheung, R. D. Cone, and D. L. Marks, “Orexigenic and anorexigenic mechanisms in the control of nutrition in chronic kidney disease,” Pediatric Nephrology, vol. 20, no. 3, pp. 427–431, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. J. Menyhért, G. Wittmann, R. M. Lechan, É. Keller, Z. Liposits, and C. Fekete, “Cocaine- and Amphetamine-Regulated Transcript (CART) is colocalized with the orexigenic neuropeptide Y and agouti-related protein and absent from the anorexigenic α-melanocyte-stimulating hormone neurons in the infundibular nucleus of the human hypothalamus,” Endocrinology, vol. 148, no. 9, pp. 4276–4281, 2007. View at Publisher · View at Google Scholar · View at PubMed
  81. N. Wierup, W. G. Richards, A. W. Bannon, M. J. Kuhar, B. Ahrén, and F. Sundler, “CART knock out mice have impaired insulin secretion and glucose intolerance, altered beta cell morphology and increased body weight,” Regulatory Peptides, vol. 129, no. 1-3, pp. 203–211, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. J. Hager, C. Dina, S. Francke et al., “A genome-wide scan for human obesity genes reveals a major susceptibility locus on chromosome 10,” Nature Genetics, vol. 20, no. 3, pp. 304–308, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. K. Yamada, X. Yuan, S. Otabe, A. Koyanagi, W. Koyama, and Z. Makita, “Sequencing of the putative promoter region of the cocaine- and amphetamine-regulated-transcript gene and identification of polymorphic sites associated with obesity,” International Journal of Obesity, vol. 26, no. 1, pp. 132–136, 2002. View at Publisher · View at Google Scholar
  84. A. Guérardel, M. Barat-Houari, F. Vasseur et al., “Analysis of sequence variability in the CART gene in relation to obesity in a Caucasian population,” BMC Genetics, vol. 6, article 19, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. M. W. Schwartz, S. C. Woods, R. J. Seeley, G. S. Barsh, D. G. Baskin, and R. L. Leibel, “Is the energy homeostasis system inherently biased toward weight gain?” Diabetes, vol. 52, no. 2, pp. 232–238, 2003. View at Google Scholar
  86. A. Vicentic, “CART peptide diurnal variations in blood and brain,” Peptides, vol. 27, no. 8, pp. 1942–1948, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. P. D. Lambert, P. R. Couceyro, K. M. Mcgirr, S. E. Dall Vechia, Y. Smith, and M. J. Kuhar, “CART peptides in the central control of feeding and interactions with neuropeptide Y,” Synapse, vol. 29, no. 4, pp. 293–298, 1998. View at Publisher · View at Google Scholar
  88. P. Mao, A. Ardeshiri, R. Jacks, S. Yang, P. D. Hurn, and N. J. Alkayed, “Mitochondrial mechanism of neuroprotection by CART,” European Journal of Neuroscience, vol. 26, no. 3, pp. 624–632, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. B. M. Spiegelman and J. S. Flier, “Obesity and the regulation of energy balance,” Cell, vol. 104, no. 4, pp. 531–543, 2001. View at Publisher · View at Google Scholar · View at Scopus
  90. P. Wiedmer, R. Nogueiras, F. Broglio, D. D'Alessio, and M. H. Tschöp, “Ghrelin, obesity and diabetes,” Nature Clinical Practice Endocrinology and Metabolism, vol. 3, no. 10, pp. 705–712, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. S. Helmling, F. Jarosch, and S. Klussmann, “The promise of ghrelin antagonism in obesity treatment,” Drug News and Perspectives, vol. 19, no. 1, pp. 13–20, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. B. P. Barnett, Y. Hwang, M. S. Taylor et al., “Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor,” Science, vol. 330, no. 6011, pp. 1689–1692, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. A. Soukas, P. Cohen, N. D. Socci, and J. M. Friedman, “Leptin-specific patterns of gene expression in white adipose tissue,” Genes and Development, vol. 14, no. 8, pp. 963–980, 2000. View at Google Scholar · View at Scopus
  94. Y. Kim and T. Park, “DNA microarrays to define and search for genes associated with obesity,” Biotechnology Journal, vol. 5, no. 1, pp. 99–112, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. M. Yamanaka, Y. Itakura, T. Inoue et al., “Protective effect of brain-derived neurotrophic factor on pancreatic islets in obese diabetic mice,” Metabolism, vol. 55, no. 10, pp. 1286–1292, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. B. K. Pedersen, M. Pedersen, K. S. Krabbe, H. Bruunsgaard, V. B. Matthews, and M. A. Febbraio, “Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals: experimental physiology-hot topic review,” Experimental Physiology, vol. 94, no. 12, pp. 1153–1160, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. M. T. Lin and M. F. Beal, “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, vol. 443, no. 7113, pp. 787–795, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. P. Mao and P. H. Reddy, “Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer's disease: implications for early intervention and therapeutics,” Biochimica et Biophysica Acta, vol. 1812, no. 11, pp. 1359–1370, 2011. View at Publisher · View at Google Scholar · View at PubMed
  99. J. Styskal, H. Van Remmen, A. Richardson, and A. B. Salmon, “Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models?” Free Radical Biology and Medicine, vol. 52, no. 1, pp. 46–58, 2012. View at Publisher · View at Google Scholar · View at PubMed
  100. M. F. Elias, A. L. Goodell, and S. R. Waldstein, “Obesity, cognitive functioning and dementia: back to the future,” Journal of Alzheimer's Disease. In press.
  101. Y. Li, Q. Dai, J. C. Jackson, and J. Zhang, “Overweight is associated with decreased cognitive functioning among school-age children and adolescents,” Obesity, vol. 16, no. 8, pp. 1809–1815, 2008. View at Publisher · View at Google Scholar · View at PubMed
  102. S. Jacquemont, A. Reymond, F. Zufferey et al., “Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus,” Nature, vol. 478, no. 7367, pp. 97–102, 2011. View at Publisher · View at Google Scholar · View at PubMed
  103. J. Cordeira and M. Rios, “Weighing in the role of BDNF in the central control of eating behavior,” Molecular Neurobiology, vol. 44, no. 3, pp. 441–448, 2011. View at Google Scholar
  104. E. E. Noble, C. J. Billington, C. M. Kotz, and C. Wang, “The lighter side of BDNF,” American Journal of Physiology, vol. 300, no. 5, pp. R1053–R1069, 2011. View at Publisher · View at Google Scholar · View at PubMed
  105. K.L. Stanhope, “Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome,” Annual Review of Medicine, vol. 63, pp. 329–343, 2012. View at Google Scholar
  106. E. L. Sullivan, M. S. Smith, and K. L. Grove, “Perinatal exposure to high-fat diet programs energy balance, metabolism and behavior in adulthood,” Neuroendocrinology, vol. 93, no. 1, pp. 1–8, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. E. L. Sullivan, B. Grayson, D. Takahashi et al., “Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring,” Journal of Neuroscience, vol. 30, no. 10, pp. 3826–3830, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. J. J. Reilly and Z. C. McDowell, “Physical activity interventions in the prevention and treatment of paediatric obesity: systematic review and critical appraisal,” Proceedings of the Nutrition Society, vol. 62, no. 3, pp. 611–619, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. B. K. Pedersen, M. Pedersen, K. S. Krabbe, H. Bruunsgaard, V. B. Matthews, and M. A. Febbraio, “Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals: experimental physiology-hot topic review,” Experimental Physiology, vol. 94, no. 12, pp. 1153–1160, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. D. A. Boggs, L. Rosenberg, Y. C. Cozier et al., “General and abdominal obesity and risk of death among black women,” The New England Journal of Medicine, vol. 365, no. 10, pp. 901–908, 2011. View at Publisher · View at Google Scholar · View at PubMed
  111. R. J. F. Loos, “Recent progress in the genetics of common obesity,” British Journal of Clinical Pharmacology, vol. 68, no. 6, pp. 811–829, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus