Table of Contents
ISRN Surgery
Volume 2012 (2012), Article ID 546721, 8 pages
http://dx.doi.org/10.5402/2012/546721
Clinical Study

Computerized Decision Support System for Intraoperative Analysis of Margin Status in Breast Conservation Therapy

1Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
2Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
3Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
4Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
5Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA

Received 6 September 2012; Accepted 8 October 2012

Academic Editors: M. Aurich and A. Polydorou

Copyright © 2012 Manuel E. Ruidíaz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. Méndez, W. W. Lamorte, A. de las Morenas et al., “Influence of breast cancer margin assessment method on the rates of positive margins and residual carcinoma,” American Journal of Surgery, vol. 192, no. 4, pp. 538–540, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Dunne, J. P. Burke, M. Morrow, and M. R. Kell, “Effect of margin status on local recurrence after breast conservation and radiation therapy for ductal carcinoma in situ,” Journal of Clinical Oncology, vol. 27, no. 10, pp. 1615–1620, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. V. S. Klimberg, S. Harms, and S. Korourian, “Assessing margin status,” Surgical Oncology, vol. 8, no. 2, pp. 77–84, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Obedian and B. G. Haffty, “Negative margin status improves local control in conservatively managed breast cancer patients,” Cancer Journal from Scientific American, vol. 6, no. 1, pp. 28–33, 2000. View at Google Scholar · View at Scopus
  5. C. E. Cox, M. Hyacinthe, R. J. Gonzalez et al., “Cytologic evaluation of lumpectomy margins in patients with ductal carcinoma in situ: clinical outcome,” Annals of Surgical Oncology, vol. 4, no. 8, pp. 644–649, 1997. View at Google Scholar · View at Scopus
  6. G. C. Balch, S. K. Mithani, J. F. Simpson, M. C. Kelley, J. Gwin, and K. Bland, “Accuracy of intraoperative gross examination of surgical margin status in women undergoing partial mastectomy for breast malignancy,” American Surgeon, vol. 71, no. 1, pp. 22–28, 2005. View at Google Scholar · View at Scopus
  7. A. Chagpar, T. Yen, A. Sahin et al., “Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,” American Journal of Surgery, vol. 186, no. 4, pp. 371–377, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Henry-Tillman, A. T. Johnson, L. F. Smith, and V. S. Klimberg, “Intraoperative ultrasound and other techniques to achieve negative margins,” Seminars in Surgical Oncology, vol. 20, no. 3, pp. 206–213, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. M. M. Moore, L. A. Whitney, L. Cerilli et al., “Intraoperative ultrasound is associated with clear lumpectomy margins for palpable infiltrating ductal breast cancer,” Annals of Surgery, vol. 233, no. 6, pp. 761–768, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. H. C. Snider and D. G. Morrison, “Intraoperative ultrasound localization of nonpalpable breast lesions,” Annals of Surgical Oncology, vol. 6, no. 3, pp. 308–314, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. S. P. Harlow, D. N. Krag, S. E. Ames, and D. L. Weaver, “Intraoperative ultrasound localization to guide surgical excision of nonpalpable breast carcinoma,” Journal of the American College of Surgeons, vol. 189, no. 3, pp. 241–246, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. K. M. Davis, C.-H. Hsu, M. E. Bouton, K. L. Wilhelmson, and I. K. Komenaka, “Intraoperative ultrasound can decrease the re-excision lumpectomy rate in patients with palpable breast cancers,” American Surgeon, vol. 77, no. 6, pp. 720–725, 2011. View at Google Scholar · View at Scopus
  13. N. Cabioglu, K. K. Hunt, A. A. Sahin et al., “Role for intraoperative margin assessment in patients undergoing breast-conserving surgery,” Annals of Surgical Oncology, vol. 14, no. 4, pp. 1458–1471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. C. Cendán, D. Coco, and E. M. Copeland, “Accuracy of intraoperative frozen-section analysis of breast cancer lumpectomy-bed margins,” Journal of the American College of Surgeons, vol. 201, no. 2, pp. 194–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. T. P. Olson, J. Harter, A. Muñoz, D. M. Mahvi, and T. M. Breslin, “Frozen section analysis for intraoperative margin assessment during breast-conserving surgery results in low rates of re-excision and local recurrence,” Annals of Surgical Oncology, vol. 14, no. 10, pp. 2953–2960, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. E. R. Sauter, J. P. Hoffman, F. D. Ottery et al., “Is frozen section analysis of reexcision lumpectomy margins worthwhile? Margin analysis in breast reexcisions,” Cancer, vol. 73, pp. 2607–2612, 1994. View at Google Scholar
  17. S. Weber, F. K. Storm, J. Stitt, and D. M. Mahvi, “The role of frozen section analysis of margins during breast conservation surgery,” Cancer Journal from Scientific American, vol. 3, no. 5, pp. 273–277, 1997. View at Google Scholar · View at Scopus
  18. V. S. Klimberg, K. C. Westbrook, and S. Korourian, “Use of touch preps for diagnosis and evaluation of surgical margins in breast cancer,” Annals of Surgical Oncology, vol. 5, no. 3, pp. 220–226, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Bakhshandeh, S. O. Tutuncuoglu, G. Fischer, and S. Masood, “Use of imprint cytology for assessment of surgical margins in lumpectomy specimens of breast cancer patients,” Diagnostic Cytopathology, vol. 35, no. 10, pp. 656–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. I. T. Rubio, S. Korourian, C. Cowan, D. N. Krag, M. Colvert, and V. S. Klimberg, “Use of touch preps for intraoperative diagnosis of sentinel lymph node metastases in breast cancer,” Annals of Surgical Oncology, vol. 5, no. 8, pp. 689–694, 1998. View at Google Scholar · View at Scopus
  21. A. J. Creager, J. A. Shaw, P. R. Young, and K. R. Geisinger, “Intraoperative evaluation of lumpectomy margins by imprint cytology with histologic correlation: a community hospital experience,” Archives of Pathology and Laboratory Medicine, vol. 126, no. 7, pp. 846–848, 2002. View at Google Scholar · View at Scopus
  22. C. E. Cox, N. N. Ku, D. S. Reintgen, H. M. Greenberg, S. V. Nicosia, and S. Wangensteen, “Touch preparation cytology of breast lumpectomy margins with histologic correlation,” Archives of Surgery, vol. 126, no. 4, pp. 490–493, 1991. View at Google Scholar · View at Scopus
  23. R. G. Pleijhuis, M. Graafland, J. De Vries, J. Bart, J. S. De Jong, and G. M. Van Dam, “Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions,” Annals of Surgical Oncology, vol. 16, no. 10, pp. 2717–2730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. U. Cavallaro and G. Christofori, “Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough,” Biochimica et Biophysica Acta, vol. 1552, no. 1, pp. 39–45, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. E. C. McGary, D. Chelouche Lev, and M. Bar-Eli, “Cellular adhesion pathways and metastatic potential of human melanoma,” Cancer Biology and Therapy, vol. 1, no. 5, pp. 459–465, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. W. G. Stetler-Stevenson, S. Aznavoorian, and L. A. Liotta, “Tumor cell interactions with the extracellular matrix during invasion and metastasis,” Annual Review of Cell Biology, vol. 9, pp. 541–573, 1993. View at Google Scholar · View at Scopus
  27. S. L. Blair, J. Wang-Rodriguez, M. J. Cortes-Mateos et al., “Enhanced touch preps improve the ease of interpretation of intraoperative breast cancer margins,” American Surgeon, vol. 73, no. 10, pp. 973–976, 2007. View at Google Scholar · View at Scopus
  28. F. J. Fleming, A. D. K. Hill, E. W. Mc Dermott, A. O'Doherty, N. J. O'Higgins, and C. M. Quinn, “Intraoperative margin assessment and re-excision rate in breast conserving surgery,” European Journal of Surgical Oncology, vol. 30, no. 3, pp. 233–237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. D. Abràmoff, P. J. Magalhães, and S. J. Ram, “Image processing with imageJ,” Biophotonics International, vol. 11, no. 7, pp. 36–41, 2004. View at Google Scholar · View at Scopus