Table of Contents
ISRN Ecology
Volume 2012, Article ID 563191, 13 pages
http://dx.doi.org/10.5402/2012/563191
Research Article

Changes in Land Use System and Environmental Factors Affect Arbuscular Mycorrhizal Fungal Density and Diversity, and Enzyme Activities in Rhizospheric Soils of Acacia senegal (L.) Willd.

1Centre de Recherche de Bel-Air, Laboratoire Commun de Microbiologie, (IRD/ISRA/UCAD), BP 1386, 18524 Dakar, Senegal
2Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005, Fann, Dakar, Senegal
3Centre Régional de Nkolbisson, IRAD: Institut de Recherche Agricole pour le Développement, P.O. Box 2067, Yaoundé, Cameroon
4Centre de recherche de Ouagadougou, Institut de Recherche pour le Développement (IRD), 01 BP 182 Ouagadougou, Burkina Faso
5Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005, Fann, Dakar, Senegal
6Laboratoire des Symbioses Tropicales et Méditerranéennes, Cirad/IRD/Inra/Agro-M/UM2 Campus-international de Baillarguet, TA A-82 / J, 34398 Montpellier Cedex 5, France
7Laboratoire de Botanique et Biodiversité, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005, Fann, Dakar, Senegal
8CIRAD, Laboratoire des Symbioses Tropicales et Méditerranéennes, TA A-82 / J, 34398 Montpellier Cedex 5, France

Received 27 April 2012; Accepted 25 June 2012

Academic Editors: G. Brunialti and J. G. Zaller

Copyright © 2012 Fatou Ndoye et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Kandeler, C. Kampichler, and O. Horak, “Influence of heavy metals on the functional diversity of soil microbial communities,” Biology and Fertility of Soils, vol. 23, no. 3, pp. 299–306, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Acosta-Martínez, T. M. Zobeck, T. E. Gill, and A. C. Kennedy, “Enzyme activities and microbial community structure in semiarid agricultural soils,” Biology and Fertility of Soils, vol. 38, no. 4, pp. 216–227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Benitez, R. Nogales, M. Campos, and F. Ruano, “Biochemical variability of olive-orchard soils under different management systems,” Applied Soil Ecology, vol. 32, no. 2, pp. 221–231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. R. D. Finlay, “Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium,” Journal of Experimental Botany, vol. 59, no. 5, pp. 1115–1126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. E. Smith and D. J. Read, Mycorrhizal Symbiosis, Academic Press, London, UK, 3rd edition, 2008.
  6. M. G. A. Van Der Heijden, J. N. Klironomos, M. Ursic et al., “Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity,” Nature, vol. 396, no. 6706, pp. 69–72, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. T. A. Diop, M. Guèye, B. L. Dreyfus, C. Plenchette, and D. G. Strullu, “Indigenous arbuscular mycorrhizal fungi associated with Acacia albida Del. in different areas of Senegal,” Applied and Environmental Microbiology, vol. 60, no. 9, pp. 3433–3436, 1994. View at Google Scholar · View at Scopus
  8. R. Duponnois, C. Plenchette, J. Thioulouse, and P. Cadet, “The mycorrhizal soil infectivity and arbuscular mycorrhizal fungal spore communities in soils of different aged fallows in Senegal,” Applied Soil Ecology, vol. 17, no. 3, pp. 239–251, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Manga, T. A. Diop, D. E. van Tuinen, and M. Neyra, “Molecular diversity of arbuscular mycorrhizal fungi associated with Acacia seyal in a semiarid zone of Senegal,” Sécheresse, vol. 18, no. 2, pp. 129–133, 2007. View at Google Scholar
  10. Y. Zhang, L. D. Guo, and R. J. Liu, “Survey of arbuscular mycorrhizal fungi in deforested and natural forest land in the subtropical region of Dujiangyan, Southwest China,” Plant and Soil, vol. 261, no. 1-2, pp. 257–263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. O. A. Oseni, M. M. Ekperigin, A. A. Akindahunsi, and G. Oboh, “Studies of physiochemical and microbial properties of soils from rainforest and plantation in Ondo state, Nigeria,” African Journal of Agricultural Research, vol. 2, no. 11, pp. 605–609, 2007. View at Google Scholar
  12. H. J. Von Maydell, Trees and Shrubs of the Sahel: their Characteristics and Uses, Deutsche Gesellschaft fuer Technische Zusammenarbeit (GTZ), Eschborn, Germany, 1986.
  13. M. E. Ballal, Yield trends of gum arabic from Acacia senegal as related to some environmental and managerial factor [Ph.D. thesis], Faculty of Forestry, University of Khartoum, Khartoum, Sudan, 2002.
  14. S. Piriyaprin, V. Sunanthapongsout, P. Limlong, C. Leavngv-utiviroj, and N. Pasda, “Study on soil microbial biodiversity in rhizophore of vetiver grass in degrading soil,” in Proceedings of the 17th World Congress of Soil Science, pp. 14–21, 2002.
  15. J. M. Phillips and D. S. Hayman, “Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection,” Transactions of the British Mycological Society, vol. 55, pp. 158–161, 1970. View at Google Scholar
  16. A. Trouvelot, J. L. Kough, and V. Gianinazzi-Pearson, “Mesure du taux de mycorhization VA d'un système radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionnelle,” in Mycorrhizae: Physiology and Genetics, V. Gianinazzi-Pearson and S. Gianinazzi, Eds., pp. 217–221, INRA, Paris, France, 1986. View at Google Scholar
  17. J. W. Gerdemann and T. H. Nicolson, “Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting,” Transactions of the British Mycological Society, vol. 46, pp. 235–244, 1963. View at Google Scholar
  18. V. Furlan, “Techniques et procédures pour la culture des champignons endomycorhiziens,” Note Technique 65, Université Laval, Québec, Canada, 1981. View at Google Scholar
  19. M. Brundrett, N. Bougher, B. Dell, T. Grove, and N. Malajczuk, Working with Mycorrhizas in Forestry and Agriculture, Pirie Printers, Canberra, Australia, 1996.
  20. D. E. van Tuinen, E. Jacquot, B. Zhao, A. Gollotte, and V. Gianinazzi-Pearson, “Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25s rDNA-targeted nested PCR,” Molecular Ecology, vol. 7, no. 7, pp. 879–887, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Gollotte, D. E. van Tuinen, and D. Atkinson, “Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment,” Mycorrhiza, vol. 14, no. 2, pp. 111–117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools,” Nucleic Acids Research, vol. 25, no. 24, pp. 4876–4882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2721–2739, 2011. View at Google Scholar
  25. K. Alef, “Estimation of hydrolysis of fluorescein diacetate,” in Methods in Applied Soil Microbiology and Biochemistry, K. Alef and P. Nannipieri, Eds., pp. 232–233, Academic Press, London, UK, 1998. View at Google Scholar
  26. J. Skujiņs, “Extracellular enzymes in soil,” CRC Critical Reviews in Microbiology, vol. 4, no. 4, pp. 383–421, 1976. View at Google Scholar · View at Scopus
  27. M. A. Tabatabai and J. M. Bremner, “Use of p-nitrophenyl phosphate for assay of soil phosphatase activity,” Soil Biology and Biochemistry, vol. 1, no. 4, pp. 301–307, 1969. View at Google Scholar · View at Scopus
  28. Y. Escoufier, “L'analyse des tableaux de contingence simples et multiples,” Metron, vol. 40, pp. 53–77, 1982. View at Google Scholar
  29. M. G. A. van der Heijden, S. Verkade, and S. J. de Bruin, “Mycorrhizal fungi reduce the negative effects of nitrogen enrichment on plant community structure in dune grassland,” Global Change Biology, vol. 14, no. 11, pp. 2626–2635, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. L. Stürmer and J. O. Siqueira, “Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon,” Mycorrhiza, vol. 21, no. 4, pp. 255–267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Karthikeyan and T. Selvaraj, “Diversity of arbuscular mycorrhizal fungi (AMF) on the coastal saline soils of the West coast of Kerala, Southern India,” World Journal of Agricultural Science, vol. 5, pp. 803–809, 2009. View at Google Scholar
  32. Namenasrullah, M. Sharif, K. Rubina, and T. Burni, “Occurrence and distribution of arbuscular mycorrhizal fungi in wheat and maize crops of Malakand division of North West Frontier Province,” Pakistan Journal of Botany, vol. 42, no. 2, pp. 1301–1312, 2010. View at Google Scholar · View at Scopus
  33. J. D. Graves, N. K. Watkins, A. H. Fitter, D. Robinson, and C. Scrimgeour, “Intraspecific transfer of carbon between plants linked by a common mycorrhizal network,” Plant and Soil, vol. 192, no. 2, pp. 153–159, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Michelsen, N. Lisanework, and I. Friis, “Impacts of tree plantations in the Ethiopian highland on soil fertility, shoot and root growth, nutrient utilisation and mycorrhizal colonisation,” Forest Ecology and Management, vol. 61, no. 3-4, pp. 299–324, 1993. View at Google Scholar · View at Scopus
  35. A. H. Meyer, A. Botha, A. J. Valentine, E. Acher, and P. J. E. Louw, “The occurrence and infectivity of arbuscular mycorrhizal fungi in inoculated and uninoculated rhizosphere soils of two-year-old commercial grapevines,” South African Journal for Enology and Viticulture, vol. 26, no. 2, pp. 90–94, 2005. View at Google Scholar
  36. L. M. Carvalho, P. M. Correia, R. J. Ryel, and M. A. Martins-Loução, “Spatial variability of arbuscular mycorrhizal fungal spores in two natural plant communities,” Plant and Soil, vol. 251, no. 2, pp. 227–236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Abbas, M. Ducousso, M. Abourouh, R. Azcón, and R. Duponnois, “Diversity of arbuscular mycorrhizal fungi in Tetraclinis articulata (Vahl) Masters woodlands in Morocco,” Annals of Forest Science, vol. 63, no. 3, pp. 285–291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Öpik, M. Moora, M. Zobel et al., “High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest,” New Phytologist, vol. 179, no. 3, pp. 867–876, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Öpik, M. Moora, J. Liira, and M. Zobel, “Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe,” Journal of Ecology, vol. 94, no. 4, pp. 778–790, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. I. Hijri, Z. Sýkorová, F. Oehl et al., “Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity,” Molecular Ecology, vol. 15, no. 8, pp. 2277–2289, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Błaszkowski, M. Tadych, and T. Madej, “Arbuscular mycorrhizal fungi (Glomales, Zygomycota) of the Błedowska Desert, Poland,” Acta Societatis Botanicorum Poloniae, vol. 71, no. 1, pp. 71–85, 2002. View at Google Scholar · View at Scopus
  42. J. N. Klironomos and M. M. Hart, “Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum,” Mycorrhiza, vol. 12, no. 4, pp. 181–184, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Lumini, A. Orgiazzi, R. Borriello, P. Bonfante, and V. Bianciotto, “Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach,” Environmental Microbiology, vol. 12, no. 8, pp. 2165–2179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. P. L. Leal, S. L. Stürmer, and J. O. Siqueira, “Occurrence and diversity of arbuscular mycorrhizal fungi in trap cultures from soils under different land use systems in the amazon, Brazil,” Brazilian Journal of Microbiology, vol. 40, no. 1, pp. 111–121, 2009. View at Google Scholar · View at Scopus
  45. M. Vallino, N. Massa, E. Lumini, V. Bianciotto, G. Berta, and P. Bonfante, “Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy,” Environmental Microbiology, vol. 8, no. 6, pp. 971–983, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Whitfield, A. J. Richards, and D. L. Rimmer, “Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in Northern England,” Mycorrhiza, vol. 14, no. 1, pp. 55–62, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. V. Estaún, R. Savé, and C. Biel, “AM inoculation as a biological tool to improve plant revegetation of a disturbed soil with Rosmarinus officinalis under semi-arid conditions,” Applied Soil Ecology, vol. 6, no. 3, pp. 223–229, 1997. View at Google Scholar · View at Scopus
  48. A. Sanon, F. Ndoye, E. Baudoin, Y. Prin, A. Galiana, and R. Duponnois, “Management of the mycorrhizal soil infectivity to improve reforestation programs’ achievements in Sahelian ecosystems,” in Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, A. Méndez-Vilas, Ed., vol. 1, pp. 230–238, 2010. View at Google Scholar
  49. K. V. C. Kumar, K. R. Chandrashekar, and R. Lakshmipathy, “Variation in arbuscular mycorrhizal fungi and phosphatase activity associated with Sida cardifoliain Karnataka,” World Journal of Agricultural Science, vol. 4, no. 6, pp. 770–774, 2008. View at Google Scholar
  50. L. Kong, Y. B. Wang, L. N. Zhao, and Z. H. Chen, “Enzyme and root activities in surface-flow constructed wetlands,” Chemosphere, vol. 76, no. 5, pp. 601–608, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. L. P. Qiu, J. Liu, Y. Q. Wang, H. M. Sun, and W. X. He, “Research on relationship between soil enzyme activities and soil fertility,” Plant Nutrition and Fertility Science, vol. 10, pp. 277–280, 2004. View at Google Scholar
  52. Z. J. Shi, Y. Lu, Z. G. Xu, and S. L. Fu, “Enzyme activities of urban soils under different land use in the Shenzhen city, China,” Plant, Soil and Environment, vol. 54, no. 8, pp. 341–346, 2008. View at Google Scholar · View at Scopus
  53. B. A. Caldwell, “Enzyme activities as a component of soil biodiversity: a review,” Pedobiologia, vol. 49, no. 6, pp. 637–644, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Ghosh, M. Bhardwaj, T. Satyanarayana, M. Khurana, S. Mayilraj, and R. K. Jain, “Bacillus lehensis sp. nov., an alkalitolerant bacterium isolated from soil,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 2, pp. 238–242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Gianfreda, R. M. Antonietta, A. Piotrowska, G. Palumbo, and C. Colombo, “Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution,” Science of the Total Environment, vol. 341, no. 1–3, pp. 265–279, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. J. B. Wang, Z. H. Chen, L. J. Chen, A. N. Zhu, and Z. J. Wu, “Surface soil phosphorus and phosphatase activities affected by tillage and crop residue input amounts,” Plant, Soil and Environment, vol. 57, no. 6, pp. 251–257, 2011. View at Google Scholar · View at Scopus
  57. E. Gömöryová, “Small-scale variation of microbial activities in a forest soil under a beech (Fagus sylvatica L.) stand,” Polish Journal of Ecology, vol. 52, no. 3, pp. 311–321, 2004. View at Google Scholar · View at Scopus
  58. M. Pulleman and A. Tietema, “Microbial C and N transformations during drying and rewetting of coniferous forest floor material,” Soil Biology and Biochemistry, vol. 31, no. 2, pp. 275–285, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. D. M. Grifin, “Water potential as a selective factor in the microbial ecology of soil,” in Water Potential Relations in Soil Microbiology, J. F. Parr, W. R. Gardner, and L. F. Elliott, Eds., pp. 141–151, Soil Science Society and America, Madison, Wis, USA, 1981. View at Google Scholar
  60. L. E. Sommers, C. M. Gilmour, R. E. Wildung, and S. M. Beck, “The effect of water potential on decomposition processes in soil,” in Water Potential Relation in Soil Microbiology, J. F. Parr, W. R. Gardner, and L. F. Elliot, Eds., pp. 97–117, Soil Science Society of America, Madison, Wis, USA, 1981. View at Google Scholar
  61. D. Fall, D. Diouf, A. M. Zoubeirou, N. Bakhoum, A. Faye, and S. N. Sall, “Effect of distance and depth on microbial biomass and mineral nitrogen content under Acacia senegal (L.) Willd. trees,” Journal of Environmental Management, vol. 95, pp. S260–S264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Styla and A. Sawicka, “Seasonal changes in biochemical and microbiological activity of soil against the background of differentiated irrigation in an apple tree orchard after replantation,” Agronomic Research, vol. 7, no. 1, pp. 113–124, 2009. View at Google Scholar
  63. C. Grant, S. Bittman, M. Montreal, C. Plenchette, and C. Morel, “Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development,” Canadian Journal of Plant Science, vol. 85, no. 1, pp. 3–14, 2005. View at Google Scholar · View at Scopus