Table of Contents
ISRN Veterinary Science
Volume 2012, Article ID 590328, 8 pages
http://dx.doi.org/10.5402/2012/590328
Research Article

The Natural Antioxidants, Pomegranate Extract and Soy Isoflavones, Favourably Modulate Canine Endothelial Cell Function

1Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
2Heart Center Hietzing, Wolkersbergstraße 1, 1130 Vienna, Austria
3Unlicensed Product Development Unit, Virbac, 13ème rue, 06511 Carros Cedex, France
4Medical Department, Virbac, 13ème rue, 06511 Carros Cedex, France

Received 8 October 2012; Accepted 26 October 2012

Academic Editors: Z. Grabarevic and W. Yang

Copyright © 2012 Sabina M. Baumgartner-Parzer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Guglielmini, “Cardiovascular diseases in the ageing dog: diagnostic and therapeutic problems,” Veterinary Research Communications, vol. 27, supplement 1, pp. 555–560, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Belardinelli, “Endothelial dysfunction in chronic heart failure: clinical implications and therapeutic options,” International Journal of Cardiology, vol. 81, no. 1, pp. 1–8, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. S. M. Baumgartner-Parzer and W. K. Waldhäusl, “The endothelium as a metabolic and endocrine organ: Its relation with insulin resistance,” Experimental and Clinical Endocrinology and Diabetes, vol. 109, no. 2, pp. S166–S179, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Scarabelli, A. Stephanou, N. Rayment et al., “Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury,” Circulation, vol. 104, no. 3, pp. 253–256, 2001. View at Google Scholar · View at Scopus
  5. L. Rössig, S. Dimmeler, and A. M. Zeiher, “Apoptosis in the vascular wall and atherosclerosis,” Basic Research in Cardiology, vol. 96, no. 1, pp. 11–22, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. J. C. Choy, D. J. Granville, D. W. C. Hunt, and B. M. McManus, “Endothelial cell apoptosis: Biochemical characteristics and potential implications for atherosclerosis,” Journal of Molecular and Cellular Cardiology, vol. 33, no. 9, pp. 1673–1690, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Leri, Y. Liu, A. Malhotra et al., “Pacing-induced heart failure in dogs enhances the expression of p53 and p53-dependent genes in ventricular myocytes,” Circulation, vol. 97, no. 2, pp. 194–203, 1998. View at Google Scholar · View at Scopus
  8. P. Korantzopoulos, D. Galaris, D. Papaioannides, and K. Siogas, “The possible role of oxidative stress in heart failure and the potential of antioxidant intervention,” Medical Science Monitor, vol. 9, no. 6, pp. RA120–RA125, 2003. View at Google Scholar · View at Scopus
  9. M. L. Rossi, N. Marziliano, P. A. Merlini et al., “Different quantitative apoptotic traits in coronary atherosclerotic plaques from patients with stable angina pectoris and acute coronary syndromes,” Circulation, vol. 110, no. 13, pp. 1767–1773, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. M. Chen and V. C. Tu, “Apoptosis and heart failure: Mechanisms and therapeutic implications,” American Journal of Cardiovascular Drugs, vol. 2, no. 1, pp. 43–57, 2002. View at Google Scholar · View at Scopus
  11. S. G. Moesgaard, C. Klostergaard, N. E. Zois et al., “Flow-mediated vasodilation measurements in cavalier king charles spaniels with increasing severity of myxomatous mitral valve disease,” Journal of Veterinary Internal Medicine, vol. 26, pp. 61–68, 2012. View at Google Scholar
  12. S. M. Cunningham, J. E. Rush, and L. M. Freeman, “Systemic inflammation and endothelial dysfunction in dogs with congestive heart failure,” Journal of Veterinary Internal Medicine, vol. 26, pp. 547–557, 2012. View at Google Scholar
  13. O. I. Aruoma, B. Halliwell, B. M. Hoey, and J. Butler, “The antioxidant action of taurine, hypotaurine and their metabolic precursors,” Biochemical Journal, vol. 256, no. 1, pp. 251–255, 1988. View at Google Scholar · View at Scopus
  14. I. Gülçin, “Antioxidant and antiradical activities of L-carnitine,” Life Sciences, vol. 78, no. 8, pp. 803–811, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. L. A. Calò, E. Pagnin, P. A. Davis et al., “Antioxidant effect of L-carnitine and its short chain esters: relevance for the protection from oxidative stress related cardiovascular damage,” International Journal of Cardiology, vol. 107, no. 1, pp. 54–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L. M. Freeman, J. E. Rush, A. K. Cahalane, P. M. Kaplan, and P. J. Markwell, “Evaluation of dietary patterns in dogs with cardiac disease,” Journal of the American Veterinary Medical Association, vol. 223, no. 9, pp. 1301–1305, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. L. M. Freeman, J. E. Rush, P. E. Milbury, and J. B. Blumberg, “Antioxidant status and biomarkers of oxidative stress in dogs with congestive heart failure,” Journal of Veterinary Internal Medicine, vol. 19, no. 4, pp. 537–541, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. D. Folts, A. L. Shug, J. R. Koke, and N. Bittar, “Protection of the ischemic dog myocardium with carnitine,” American Journal of Cardiology, vol. 41, no. 7, pp. 1209–1214, 1978. View at Google Scholar · View at Scopus
  19. M. D. Kittleson, B. Keene, P. D. Pion, and C. G. Loyer, “Results of the multicenter spaniel trial (MUST): taurine- and carnitine-responsive dilated cardiomyopathy in American cocker spaniels with decreased plasma taurine concentration,” Journal of Veterinary Internal Medicine, vol. 11, no. 4, pp. 204–211, 1997. View at Google Scholar · View at Scopus
  20. S. L. Sanderson, K. L. Gross, P. N. Ogburn et al., “Effects of dietary fat and L-carnitine on plasma and whole blood taurine concentrations and cardiac function in healthy dogs fed protein-restricted diets,” American Journal of Veterinary Research, vol. 62, no. 10, pp. 1616–1623, 2001. View at Google Scholar · View at Scopus
  21. S. L. Sanderson, “Taurine and carnitine in canine cardiomyopathy,” Veterinary Clinics of North America—Small Animal Practice, vol. 36, no. 6, pp. 1325–1343, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Tan, D. J. Jiang, H. Huang et al., “Taurine protects against low-density lipoprotein-induced endothelial dysfunction by the DDAH/ADMA pathway,” Vascular Pharmacology, vol. 46, no. 5, pp. 338–345, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Manach, A. Mazur, and A. Scalbert, “Polyphenols and prevention of cardiovascular diseases,” Current Opinion in Lipidology, vol. 16, no. 1, pp. 77–84, 2005. View at Google Scholar · View at Scopus
  24. S. K. Nicholson, G. A. Tucker, and J. M. Brameld, “Effects of dietary polyphenols on gene expression in human vascular endothelial cells,” Proceedings of the Nutrition Society, vol. 67, no. 1, pp. 42–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Rimbach, S. De Pascual-Teresa, B. A. Ewins et al., “Antioxidant and free radical scavenging activity of isoflavone metabolites,” Xenobiotica, vol. 33, no. 9, pp. 913–925, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Sierens, J. A. Hartley, M. J. Campbell, A. J. C. Leathem, and J. V. Woodside, “Effect of phytoestrogen and antioxidant supplementation on oxidative DNA damage assessed using the comet assay,” Mutation Research, vol. 485, no. 2, pp. 169–176, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. R. C. M. Siow, F. Y. L. Li, D. J. Rowlands, P. de Winter, and G. E. Mann, “Cardiovascular targets for estrogens and phytoestrogens: Transcriptional regulation of nitric oxide synthase and antioxidant defense genes,” Free Radical Biology and Medicine, vol. 42, no. 7, pp. 909–925, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. F. de Nigris, S. Williams-Ignarro, V. Sica et al., “Effects of a Pomegranate Fruit Extract rich in punicalagin on oxidation-sensitive genes and eNOS activity at sites of perturbed shear stress and atherogenesis,” Cardiovascular Research, vol. 73, no. 2, pp. 414–423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. I. Gil, F. A. Tomas-Barberan, B. Hess-Pierce, D. M. Holcroft, and A. A. Kader, “Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing,” Journal of Agricultural and Food Chemistry, vol. 48, no. 10, pp. 4581–4589, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Z. Xu, W. Zhong, M. Ghavideldarestani, R. Saurabh, S. W. Lindow, and S. L. Atkin, “Multiple mechanisms of soy isoflavones against oxidative stress-induced endothelium injury,” Free Radical Biology and Medicine, vol. 47, no. 2, pp. 167–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Hermann, A. M. Zeiher, and S. Dimmeler, “Shear stress inhibits H2O2-induced apoptosis of human endothelial cells by modulation of the glutathione redox cycle and nitric oxide synthase,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 12, pp. 3588–3592, 1997. View at Google Scholar · View at Scopus
  32. I. Spyridopoulos, E. Brogi, M. Kearney et al., “Vascular endothelial growth factor inhibits endothelial cell apoptosis induced by tumor necrosis factor-α: Balance between growth and death signals,” Journal of Molecular and Cellular Cardiology, vol. 29, no. 5, pp. 1321–1330, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Artwohl, W. F. Graier, M. Roden et al., “Diabetic LDL triggers apoptosis in vascular endothelial cells,” Diabetes, vol. 52, no. 5, pp. 1240–1247, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Artwohl, K. Muth, K. Kosulin et al., “R-(+)-α-lipoic acid inhibits endothelial cell apoptosis and proliferation: involvement of Akt and retinoblastoma protein/E2F-1,” American Journal of Physiology, vol. 293, no. 3, pp. E681–E689, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Artwohl, M. Roden, W. Waldhäusl, A. Freudenthaler, and S. M. Baumgartner-Parzer, “Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells,” The FASEB Journal, vol. 18, no. 1, pp. 146–148, 2004. View at Google Scholar · View at Scopus
  36. M. Artwohl, T. Hölzebein, C. Fürnsinn et al., “Thiazolidinediones inhibit apoptosis and heat shock protein 60 expression in human vascular endothelial cells,” Thrombosis and Haemostasis, vol. 93, no. 5, pp. 810–815, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Artwohl, C. Fürnsinn, W. Waldhäusl et al., “Thiazolidinediones inhibit proliferation of microvascular and macrovascular cells by a PPARγ-independent mechanism,” Diabetologia, vol. 48, no. 3, pp. 586–594, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Artwohl, A. Lindenmair, V. Sexl et al., “Different mechanisms of saturated versus polyunsaturated FFA-induced apoptosis in human endothelial cells,” Journal of Lipid Research, vol. 49, no. 12, pp. 2627–2640, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. S. M. Baumgartner-Parzer, L. Wagner, M. Pettermann, J. Grillari, A. Gessl, and W. Waldhausl, “High-glucose-triggered apoptosis in cultured endothelial cells,” Diabetes, vol. 44, no. 11, pp. 1323–1327, 1995. View at Google Scholar · View at Scopus
  40. C. Ripoll, A. Coussaert, F. R. Waldenberger et al., “Evaluation of natural substances’ protective effects against oxidative stress in a newly developed canine endothelial cell-based assay and in cell-free radical scavenging assays,” Journal of Applied Research in Veterinary Medicine, vol. 10, no. 2, pp. 113–124, 2012. View at Google Scholar
  41. J. I. Ram and L. M. Hiebert, “Vitamin E protects porcine but not bovine cultured aortic endothelial cells from oxygen-derived free radical injury due to hydrogen peroxide,” Cell Biology and Toxicology, vol. 20, no. 1, pp. 55–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. R. M. McClain, E. Wolz, A. Davidovich, F. Pfannkuch, and J. Bausch, “Subchronic and chronic safety studies with genistein in dogs,” Food and Chemical Toxicology, vol. 43, no. 10, pp. 1461–1482, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. N. P. Seeram, R. Lee, and D. Heber, “Bioavailability of ellagic acid in human plasma after consumption of ellagitannins from pomegranate (Punica granatum L.) juice,” Clinica Chimica Acta, vol. 348, no. 1-2, pp. 63–68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. T. R. Räthel, J. F. Leikert, A. M. Vollmar, and V. M. Dirsch, “The soy isoflavone genistein induces a late but sustained activation of the endothelial nitric oxide-synthase system in vitro,” British Journal of Pharmacology, vol. 144, no. 3, pp. 394–399, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. D. F. Horrobin and M. S. Manku, “Clinical biochemistry of essential fatty acids,” in Omega-6 Essential Fatty Acids: Pathophysiology and Roles in Clinical Medicine, D. F. Horrobin, Ed., pp. 21–53, Wiley-Liss, New York, NY, USA, 1990. View at Google Scholar
  46. D. Kumar and B. I. Jugdutt, “Apoptosis and oxidants in the heart,” Journal of Laboratory and Clinical Medicine, vol. 142, no. 5, pp. 288–297, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Cai and D. G. Harrison, “Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress,” Circulation Research, vol. 87, no. 10, pp. 840–844, 2000. View at Google Scholar · View at Scopus
  48. E. Sagols and N. Priyemenko, “Oxidative stress in dog with heart failure: the role of dietary fatty acids and antioxidants,” Veterinary Medicine International, vol. 2011, Article ID 180206, 2011. View at Publisher · View at Google Scholar
  49. P. Sestili, C. Martinelli, D. Ricci et al., “Cytoprotective effect of preparations from various parts of Punica granatum L. fruits in oxidatively injured mammalian cells in comparison with their antioxidant capacity in cell free systems,” Pharmacological Research, vol. 56, no. 1, pp. 18–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. M. De Lorgeril, P. Salen, J. L. Martin, I. Monjaud, J. Delaye, and N. Mamelle, “Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study,” Circulation, vol. 99, no. 6, pp. 779–785, 1999. View at Google Scholar · View at Scopus
  51. G. Borges, W. Mullen, and A. Crozier, “Comparison of the polyphenolic composition and antioxidant activity of European commercial fruit juices,” Food and Function, vol. 1, no. 1, pp. 73–83, 2010. View at Publisher · View at Google Scholar · View at Scopus