Table of Contents
ISRN Endocrinology
Volume 2012 (2012), Article ID 592648, 6 pages
http://dx.doi.org/10.5402/2012/592648
Clinical Study

Serum Levels of Fetal Antigen 1 in Extreme Nutritional States

1KMEB laboratory, Department of Endocrinology and Center for Eating Disorders, Odense University Hospital, 5000 Odense, Denmark
2Department of Orthopedics and Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
3Department for General, Visceral, and Transplantation Surgery, University Hospital Ulm, 89069 Ulm, Germany
4Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia

Received 29 April 2012; Accepted 22 May 2012

Academic Editors: G. Garruti, J. A. Rillema, and C. G. Scanes

Copyright © 2012 Alin Andries et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. H. Jensen, B. Teisner, P. Hojrup et al., “Studies on the isolation, structural analysis and tissue localization of fetal antigen 1 and its relation to a human adrenal-specific cDNA, pG2,” Human Reproduction, vol. 8, no. 4, pp. 635–641, 1993. View at Google Scholar · View at Scopus
  2. C. H. Jensen, T. N. Krogh, P. Hojrup et al., “Protein structure of fetal antigen 1 (FA1). A novel circulating human epidermal-growth-factor-like protein expressed in neuroendocrine tumors and its relation to the gene products of dlk and pG2,” European Journal of Biochemistry, vol. 225, no. 1, pp. 83–92, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Floridon, C. H. Jensen, P. Thorsen et al., “Does Fetal antigen 1 (FA1) identify cells with regenerative, endocrine and neuroendocrine potentials? A study of FA1 in embryonic, fetal, and placental tissue and in maternal circulation,” Differentiation, vol. 66, no. 1, pp. 49–59, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. J. B. Larsen, C. H. Jensen, H. D. Schroder, B. Teisner, P. Bjerre, and C. Hagen, “Fetal antigen 1 and growth hormone in pituitary somatotroph cells,” Lancet, vol. 347, no. 8995, p. 191, 1996. View at Google Scholar · View at Scopus
  5. C. H. Jensen, K. Erb, L. G. Westergaard, A. Kliem, and B. Teisner, “Fetal antigen 1, an EGF multidomain protein in the sex hormone-producing cells of the gonads and the microenvironment of germ cells,” Molecular Human Reproduction, vol. 5, no. 10, pp. 908–913, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. C. H. Jensen, M. Meyer, H. D. Schroder, A. Kliem, J. Zimmer, and B. Teisner, “Neurons in the monoaminergic nuclei of the rat and human central nervous system express FAI/dlk,” NeuroReport, vol. 12, no. 18, pp. 3959–3963, 2001. View at Google Scholar · View at Scopus
  7. H. Zhang, J. Nøhr, C. H. Jensen et al., “Insulin-like growth factor-1/insulin bypasses Pref-1/FA1-mediated inhibition of adipocyte differentiation,” Journal of Biological Chemistry, vol. 278, no. 23, pp. 20906–20914, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Tornehave, P. Jansen, B. Teisner, H. B. Rasmussen, J. Chemnitz, and G. Moscoso, “Fetal antigen 1 (FA1) in the human pancreas: cell type expression, topological and quantitative variations during development,” Anatomy and Embryology, vol. 187, no. 4, pp. 335–341, 1993. View at Google Scholar · View at Scopus
  9. B. M. Abdallah, C. H. Jensen, G. Gutierrez, R. G. Q. Leslie, T. G. Jensen, and M. Kassem, “Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1,” Journal of Bone and Mineral Research, vol. 19, no. 5, pp. 841–852, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. B. M. Abdallah, M. Ding, C. H. Jensen et al., “Dlk1/FA1 is a novel endocrine regulator of bone and fat mass and its serum level is modulated by growth hormone,” Endocrinology, vol. 148, no. 7, pp. 3111–3121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Andersen, C. H. Jensen, R. K. Støving et al., “Fetal antigen 1 in healthy adults and patients with pituitary disease: relation to physiological, pathological, and pharmacological GH levels,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 11, pp. 5465–5470, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. C. H. Jensen, T. N. Krogh, R. K. Støving, U. Holmskov, and B. Teisner, “Fetal antigen 1 (FA1), a circulating member of the epidermal growth factor (EGF) superfamily: ELISA development, physiology and metabolism in relation to renal function,” Clinica Chimica Acta, vol. 268, no. 1-2, pp. 1–20, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. S. Moon, C. M. Smas, K. Lee et al., “Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity,” Molecular and Cellular Biology, vol. 22, no. 15, pp. 5585–5592, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Lee, J. A. Villena, Y. S. Moon et al., “Inhibition of adipogenesis and development of glucose intolerance by soluble preadipocyte factor-1 (Pref-1),” Journal of Clinical Investigation, vol. 111, no. 4, pp. 453–461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. J. A. Villena, C. S. Choi, Y. Wang et al., “Resistance to high-fat diet-induced obesity but exacerbated insulin resistance in mice overexpressing preadipocyte factor-1 (pref-1): a new model of partial lipodystrophy,” Diabetes, vol. 57, no. 12, pp. 3258–3266, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Y. Wang, P. Grayburn, S. Chen, M. Ravazzola, L. Orci, and R. H. Unger, “Adipogenic capacity and the susceptibility to type 2 diabetes and metabolic syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 16, pp. 6139–6144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Buiting, D. Kanber, J. I. Martín-Subero et al., “Clinical features of maternal uniparental disomy 14 in patients with an epimutation and a deletion of the imprinted DLK1/GTL2 gene cluster,” Human Mutation, vol. 29, no. 9, pp. 1141–1146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Hosoki, T. Ogata, M. Kagami, T. Tanaka, and S. Saitoh, “Epimutation (hypomethylation) affecting the chromosome 14q32.2 imprinted region in a girl with upd(14)mat-like phenotype,” European Journal of Human Genetics, vol. 16, no. 8, pp. 1019–1023, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Sjostrom, A. K. Lindroos, M. Peltonen et al., “Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery,” New England Journal of Medicine, vol. 351, no. 26, pp. 2683–2693, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Sjostrom, K. Narbro, and C. D. Sjostrom, “Effects of bariatric surgery on mortality in Swedish obese subjects,” The New England Journal of Medicine, vol. 8, pp. 741–752, 2007. View at Google Scholar
  21. A. M. Wolf, U. Beisiegel, B. Kortner, and H. W. Kuhlmann, “Does gastric restriction surgery reduce the risks of metabolic diseases?” Obesity Surgery, vol. 8, no. 1, pp. 9–13, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. A. M. Wolf and U. Beisiegel, “The effect of loss of excess weight on the metabolic risk factors after bariatric surgery in morbidly and super-obese patients,” Obesity Surgery, vol. 17, no. 7, pp. 910–919, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. R. K. Støving, J. Hangaard, and C. Hagen, “Update on endocrine disturbances in anorexia nervosa,” Journal of Pediatric Endocrinology and Metabolism, vol. 14, no. 5, pp. 459–480, 2001. View at Google Scholar · View at Scopus
  24. M. R. Chacón, M. Miranda, C. H. Jensen et al., “Human serum levels of fetal antigen 1 (FA1/Dlk1) increase with obesity, are negatively associated with insulin sensitivity and modulate inflammation in vitro,” International Journal of Obesity, vol. 32, no. 7, pp. 1122–1129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. P. K. Fazeli, M. A. Bredella, M. Misra et al., “Preadipocyte factor-1 is associated with marrow adiposity and bone mineral density in women with anorexia nervosa,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 1, pp. 407–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. American Society for Bariatric Surgery. Society of American Gastrointestinal Endoscopic Surgeons, “Guidelines for laparoscopic and open surgical treatment of morbid obesity,” Obesity Surgery, vol. 10, no. 4, pp. 378–379, 2000. View at Publisher · View at Google Scholar
  27. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, Text Revision, Washington, DC, USA, 4th edition, 2000.
  28. B. N. Friedrichsen, C. Carlsson, A. Møldrup et al., “Expression, biosynthesis and release of preadipocyte factor-1/delta-like protein/fetal antigen-1 in pancreatic β-cells: possible physiological implications,” Journal of Endocrinology, vol. 176, no. 2, pp. 257–266, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. B. M. Abdallah, A.-C. Bay-Jensen, B. Srinivasan et al., “Estrogen inhibits Dlk1/FA1 production: a potential mechanism for estrogen effects on bone turnover,” Journal of Bone and Mineral Research, vol. 26, no. 10, pp. 2548–2551, 2011. View at Publisher · View at Google Scholar · View at Scopus