Table of Contents
ISRN Ophthalmology
Volume 2012 (2012), Article ID 597124, 7 pages
http://dx.doi.org/10.5402/2012/597124
Review Article

Changing Trends of Imaging in Angle Closure Evaluation

1Hamilton Glaucoma Center, Shiley Eye Center and Department of Ophthalmology, University of California, La Jolla, CA 92093, USA
2Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510, USA

Received 6 January 2012; Accepted 23 February 2012

Academic Editors: I. G. Pallikaris and Á. Szél

Copyright © 2012 Syril Dorairaj et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” British Journal of Ophthalmology, vol. 90, no. 3, pp. 262–267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. American Academy of Ophthalmology, Primary Angle Closure, Preferred Practice Pattern, American Academy of Ophthalmology, San Francisco, Calif, USA, 2005.
  3. L. Dandona, R. Dandona, P. Mandal et al., “Angle-closure glaucoma in an urban population in Southern India: the andhra pradesh eye disease study,” Ophthalmology, vol. 107, no. 9, pp. 1710–1716, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Jacob, R. Thomas, S. P. Koshi, A. Braganza, and J. Muliyil, “Prevalence of primary glaucoma in an urban South Indian population,” Indian Journal of Ophthalmology, vol. 46, no. 2, pp. 81–86, 1998. View at Google Scholar · View at Scopus
  5. P. J. Foster and G. J. Johnson, “Glaucoma in china: how big is the problem?” British Journal of Ophthalmology, vol. 85, no. 11, pp. 1277–1282, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. G. H. M. B. van Rens, S. M. Arkell, W. Charlton, and W. Doesburg, “Primary angle-closure glaucoma among Alaskan Eskimos,” Documenta Ophthalmologica, vol. 70, no. 2-3, pp. 265–276, 1988. View at Google Scholar · View at Scopus
  7. V. Clemmesen and M. H. Luntz, “Lens thickness and angle closure glaucoma: a comparative oculometric study in South African Negroes and Danes,” Acta Ophthalmologica, vol. 54, no. 2, pp. 193–197, 1976. View at Google Scholar · View at Scopus
  8. J. T. Wilensky, N. Gandhi, and T. Pan, “Racial influences in open-angle glaucoma,” Annals of Ophthalmology, vol. 10, no. 10, pp. 1398–1402, 1978. View at Google Scholar · View at Scopus
  9. J. F. Salmon, “Presenting features of primary angle-closure glaucoma in patients of mixed ethnic background,” South African Medical Journal, vol. 83, no. 8, pp. 594–597, 1993. View at Google Scholar · View at Scopus
  10. Y. Liang, D. S. Friedman, Q. Zhou et al., “Prevalence and characteristics of primary angle-closure diseases in a rural adult Chinese population: the handan eye study,” Investigative Ophthalmology & Visual Science, vol. 52, no. 12, pp. 8672–8679, 2011. View at Google Scholar
  11. N. G. Congdon and D. S. Friedman, “Angle-closure glaucoma: impact, etiology, diagnosis, and treatment,” Current Opinion in Ophthalmology, vol. 14, no. 2, pp. 70–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. P. J. Foster, F. T. S. Oen, D. Machin et al., “The prevalence of glaucoma in chinese residents of singapore: a cross-sectional population survey of the tanjong pagar district,” Archives of Ophthalmology, vol. 118, no. 8, pp. 1105–1111, 2000. View at Google Scholar · View at Scopus
  13. C. J. Pavlin, K. Harasiewicz, M. D. Sherar, and F. S. Foster, “Clinical use of ultrasound biomicroscopy,” Ophthalmology, vol. 98, no. 3, pp. 287–295, 1991. View at Google Scholar · View at Scopus
  14. C. J. Pavlin, M. D. Sherar, and F. S. Foster, “Subsurface ultrasound microscopic imaging of the intact eye,” Ophthalmology, vol. 97, no. 2, pp. 244–250, 1990. View at Google Scholar · View at Scopus
  15. R. Ritch and J. M. Liebmann, “Role of ultrasound biomicroscopy in the differentiation of block glaucomas,” Current Opinion in Ophthalmology, vol. 9, no. 2, pp. 39–45, 1998. View at Google Scholar · View at Scopus
  16. S. Kaushik, R. Jain, S. Pandav, and A. Gupta, “Evaluation of the anterior chamber angle in Asian Indian eyes by ultrasound biomicroscopy and gonioscopy,” Indian Journal of Ophthalmology, vol. 54, no. 3, pp. 159–163, 2006. View at Google Scholar · View at Scopus
  17. Y. Barkana, S. K. Dorairaj, Y. Gerber, J. M. Liebmann, and R. Ritch, “Agreement between gonioscopy and ultrasound biomicroscopy in detecting iridotrabecular apposition,” Archives of Ophthalmology, vol. 125, no. 10, pp. 1331–1335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Narayanaswamy, L. Vijaya, B. Shantha, M. Baskaran, A. V. Sathidevi, and S. Baluswamy, “Anterior chamber angle assessment using gonioscopy and ultrasound biomicroscopy,” Japanese Journal of Ophthalmology, vol. 48, no. 1, pp. 44–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Mora, C. Sangermani, S. Ghirardini, A. Carta, N. Ungaro, and S. A. Gandolfi, “Ultrasound biomicroscopy and iris pigment dispersion: a case-control study,” British Journal of Ophthalmology, vol. 94, no. 4, pp. 428–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Sbeity, S. K. Dorairaj, S. Reddy, C. Tello, J. M. Liebmann, and R. Ritch, “Ultrasound biomicroscopy of zonular anatomy in clinically unilateral exfoliation syndrome,” Acta Ophthalmologica, vol. 86, no. 5, pp. 565–568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. C. J. Pavlin, K. Harasiewicz, and F. S. Foster, “Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes,” American Journal of Ophthalmology, vol. 113, no. 4, pp. 381–389, 1992. View at Google Scholar · View at Scopus
  22. R. Ursea and R. H. Silverman, “Anterior segment imaging for assessment of glaucoma,” Expert Review Of Ophthalmology, vol. 5, no. 1, pp. 59–74, 2010. View at Google Scholar
  23. T. Dada, R. Gadia, A. Sharma et al., “Ultrasound Biomicroscopy in Glaucoma,” Survey of Ophthalmology, vol. 56, no. 5, pp. 433–450, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Quek, M. Nongpiur, S. Perera, and T. Aung, “Angle imaging: advances and challenges,” Indian Journal of Ophthalmology, vol. 59, no. 1, pp. S69–S75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. C. K. Leung, H. Li, R. N. Weinreb et al., “Anterior chamber angle measurement with anterior segment optical coherence tomography: a comparison between slit lamp OCT and VisanteOCT,” Investigative Ophthalmology & Visual Science, vol. 49, no. 8, pp. 3469–3474, 2008. View at Google Scholar
  26. T. S. Prata, S. Dorairaj, C. G. V. De Moraes, C. Tello, J. M. Liebmann, and R. Ritch, “Indentation slitlamp-adapted optical coherence tomography technique for anterior chamber angle assessment,” Archives of Ophthalmology, vol. 128, no. 5, pp. 646–647, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, “Detailed visualization of the anterior segment using fourier-domain optical coherence tomography,” Archives of Ophthalmology, vol. 126, no. 6, pp. 765–771, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. C. J. Pavlin and F. S. Foster, “Ultrasound biomicroscopy in glaucoma,” Acta Ophthalmologica. Supplementum, no. 204, pp. 7–9, 1992. View at Google Scholar
  29. C. Wirbelauer, A. Karandish, H. Häberle, and T. P. Duy, “Noncontact goniometry with optical coherence tomography,” Archives of Ophthalmology, vol. 123, no. 2, pp. 179–185, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. L. M. Sakata, R. Lavanya, D. S. Friedman et al., “Assessment of the scleral spur in anterior segment optical coherence tomography images,” Archives of Ophthalmology, vol. 126, no. 2, pp. 181–185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Ishikawa, J. M. Liebmann, and R. Ritch, “Quantitative assessment of the anterior segment using ultrasound biomicroscopy,” Current Opinion in Ophthalmology, vol. 11, no. 2, pp. 133–139, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. S. F. Urbak, “Ultrasound biomicroscopy. I. Precision of measurements,” Acta Ophthalmologica Scandinavica, vol. 76, no. 4, pp. 447–455, 1998. View at Google Scholar · View at Scopus
  33. C. K. S. Leung, D. W. F. Yick, Y. Y. Y. Kwong et al., “Analysis of bleb morphology after trabeculectomy with Visante anterior segment optical coherence tomography,” British Journal of Ophthalmology, vol. 91, no. 3, pp. 340–344, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Müller, G. Dahmen, E. Pörksen et al., “Anterior chamber angle measurement with optical coherence tomography: intraobserver andinterobserver variability,” Journal of Cataract and Refractive Surgery, vol. 32, no. 11, pp. 1803–1808, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Dada, R. Sihota, R. Gadia, A. Aggarwal, S. Mandal, and V. Gupta, “Comparison of anterior segment optical coherence tomography and ultrasound biomicroscopy for assessment of the anterior segment,” Journal of Cataract and Refractive Surgery, vol. 33, no. 5, pp. 837–840, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Dorairaj, J. M. Liebmann, and R. Ritch, “Quantitative evaluation of anterior segment parameters in the era of imaging,” Transactions of the American Ophthalmological Society, vol. 105, pp. 99–108, 2007, discussion 108–110. View at Google Scholar
  37. S. Ulaganathan, S. B. Ganeshrao, M. Baskaran, S. Srinivasan, B. Shantha, and L. Vijaya, “Plateau Iris configuration and dark-light changes in anterior segment optical coherence tomography,” Ophthalmic Surg Lasers Imaging, vol. 41, pp. e1–e4, 2010. View at Publisher · View at Google Scholar
  38. T. Jing, P. Marziliano, and H. T. Wong, “Automatic detection of Schwalbe's line in the anterior chamber angle of the eye using HD-OCT images.,” Conference Proceedings: IEEE Engineering in Medicine and Biology Society, vol. 2010, pp. 3013–3016, 2010. View at Google Scholar · View at Scopus
  39. G. S. Ang and A. P. Wells, “Factors influencing laser peripheral iridotomy outcomes in white eyes: an anterior segment optical coherence tomography study,” Journal of Glaucoma, vol. 20, no. 9, pp. 577–583, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. K. S. Lee, K. R. Sung, S. Y. Kang, J. W. Cho, D. Y. Kim, and M. S. Kook, “Residual anterior chamber angle closure in narrow-angle eyes following laser peripheral iridotomy: anterior segment optical coherence tomography quantitative study,” Japanese Journal of Ophthalmology, vol. 55, no. 3, pp. 213–219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Lei, N. Wang, L. Wang, and B. Wang, “Morphological changes of the anterior segment after laser peripheral iridotomy in primary angle closure,” Eye, vol. 23, no. 2, pp. 345–350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Parc, J. Laloum, and O. Bergès, “Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of plateau iris,” Journal Francais d'Ophtalmologie, vol. 33, no. 4, pp. 266–e1, 2010. View at Publisher · View at Google Scholar · View at Scopus