Table of Contents
ISRN Spectroscopy
Volume 2012 (2012), Article ID 606317, 6 pages
http://dx.doi.org/10.5402/2012/606317
Research Article

Optical Waveguide BTX Gas Sensor Based on Yttrium-Doped Lithium Iron Phosphate Thin Film

1College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China
2Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan

Received 27 August 2012; Accepted 17 September 2012

Academic Editors: J. Kasperczyk and I. Milošev

Copyright © 2012 Patima Nizamidin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. V. Patel, T. E. Mlsna, B. Fruhberger, E. Klaassen, S. Cemalovic, and D. R. Baselt, “Chemicapacitive microsensors for volatile organic compound detection,” Sensors and Actuators B, vol. 96, no. 3, pp. 541–553, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Ueno, T. Horiuchi, O. Niwa, H. S. Zhou, T. Yamada, and I. Honma, “Portable automatic BTX measurement system with microfluidic device using mesoporous silicate adsorbent with nano-sized pores,” Sensors and Actuators B, vol. 95, no. 1–3, pp. 282–286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Röck, N. Barsan, and U. Weimar, “Electronic nosescurrent status and future trends,” Chemical Reviews, vol. 108, no. 2, pp. 705–725, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. P. Melo, B. B. Neto, E. G. Lima, L. F. B. Lir, and J. E. G. Souza, “Use of conducting polypyrrole blends as gas sensors,” Sensors and Actuators B, vol. 109, pp. 348–354, 2005. View at Google Scholar
  5. J. M. Juarez-Galan and I. Valor, “New universal, portable and cryogenic sampler for time weighted average monitoring of H2S, NH3, benzene, toluene, ethylbenzene, xylenes and dimethylethylamine,” Journal of Chromatography A, vol. 1216, no. 15, pp. 3003–3011, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Sun, X. Su, F. Xiao, C. Niu, and J. Wang, “Synthesis of nearly monodisperse Co3O4 nanocubes via a microwave-assisted solvothermal process and their gas sensing properties,” Sensors and Actuators B, vol. 157, no. 2, pp. 681–685, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Ablat, A. Yimit, M. Mahmut, and K. Itoh, “Nation film/K+-exchanged glass optical waveguide sensor for BTX detection,” Analytical Chemistry, vol. 80, no. 20, pp. 7678–7683, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Yimit, A. G. Rossberg, T. Amemiya, and K. Itoh, “Thin film composite optical waveguides for sensor applications: a review,” Talanta, vol. 65, no. 5, pp. 1102–1109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Yimit, K. Itoh, and M. Murabayashi, “Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor,” Sensors and Actuators B, vol. 88, no. 3, pp. 239–245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. M. Qi, I. Honma, and H. Zhou, “Chemical gas sensor application of open-pore mesoporous thin films based on integrated optical polarimetric interferometry,” Analytical Chemistry, vol. 78, no. 4, pp. 1034–1041, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. D. Cho, G. T. K. Fey, and H. M. Kao, “Physical and electrochemical properties of La-doped LiFePO4/C composites as cathode materials for lithium-ion batteries,” Journal of Solid State Electrochemistry, vol. 12, no. 7-8, pp. 815–823, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. C. S. Li and S. Y. Zhang, “Porous LiFePO4/NiP composite nanospheres as the cathode materials in rechargeable lithium ion batteries,” Journal of Nanoparticle Research, vol. 1, pp. 242–248, 2008. View at Google Scholar
  13. K. Zaghib, A. Mauger, F. Gendron, and C. M. Julien, “Relationship between local structure and electrochemical performance of LiFePO4 in Li-ion batteries,” Ionics, vol. 14, no. 4, pp. 271–278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Legrand, L. Dupont, K. Tang, H. Li, X. J. Huang, and E. Baudrin, “Structural and textural characterization of LiFePO4 thin films prepared by pulsed laser deposition on Si substrates,” Thin Solid Films, vol. 518, no. 19, pp. 5447–5451, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. S. Park, J. T. Son, H. T. Chung et al., “Surface modification by silver coating for improving electrochemical properties of LiFePO4,” Solid State Communications, vol. 129, no. 5, pp. 311–314, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Liu and J. Xie, “Synthesis and characterization of LiFe0.9Mg0.1PO4/nano-carbon webs composite cathode,” Journal of Materials Processing Technology, vol. 209, no. 1, pp. 477–481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Sauvage, J. M. Tarascon, and E. Baudrin, “Insights into the potentiometric response behaviour vs. Li+ of LiFePO4 thin films in aqueous medium,” Analytica Chimica Acta, vol. 622, no. 1-2, pp. 163–168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. D. G. Zhuang, X. B. Zhao, G. S. Cao, C. H. Mi, J. Tu, and J. P. Tu, “Morphology and reaction mechanism of LiFePO4 prepared by hydrothermal synthesis,” Chinese Journal of Nonferrous Metals, vol. 15, no. 12, pp. 2034–2039, 2005. View at Google Scholar · View at Scopus
  19. H. Nishihara, M. Haruna, and T. Suhara, Integrated Optics, Science Press, Beijing, China, 1st edition, 2004.
  20. S. Kondo, T. Ishikawa, and I. Abe, Adsorb Science, Chemical Industry Press, Beijing, China, 1st edition, 2006.
  21. Z. Gui Lv and L. Xue Jin, “Optical waveguide gas sensor,” Chinese Journal of Instrument Technique and Sensor, vol. 5, pp. 17–19, 1990. View at Google Scholar