Table of Contents
ISRN Endocrinology
Volume 2012, Article ID 608672, 11 pages
Research Article

The Global Transcriptional Response of Isolated Human Islets of Langerhans to Glucagon-Like Peptide-1 Receptor Agonist Liraglutide

1Center of Metabolic Diseases, Beijiao Hospital, Southern Medical University, North 1838 Guangzhou Road, Guangzhou 510515, China
2International Center for Metabolic Diseases, Southern Medical University (SMU), 8 Floor, Life Science Build, North 1838 Guangzhou Road, Guangzhou 510515, China
3Department of Medicine, Cedar-Sinai Medical Center, Los Angeles, CA 90048, USA
4Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
5UCLA Center for Excellence in Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
6School Biotechnology, Southern Medical University, North 1838 Guangzhou Road, Guangzhou 510515, China

Received 2 August 2012; Accepted 20 August 2012

Academic Editors: H. Galbo, R. Laybutt, and A. Petryk

Copyright © 2012 Xiaoning Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


GLP-1 and its analog have been used in diabetes treatment; however, the direct alteration of gene expression profile in human islets induced by GLP-1 has not been reported. In present study, transcriptional gene expression in the liraglutide-treated human islets was analyzed with 12 human U133A chips including 23000 probe sets. The data compared between liraglutide and control groups showed a significant difference on glucose-induced insulin secretion, rather than viability. Microarray analysis identified 7000 genes expressed in human islets. Eighty genes were found to be modulated by liraglutide treatment. Furthermore, the products of these genes are proteins involved in binding capability, enzyme activity, transporter function, signal transduction, cell proliferation, apoptosis, and cell differentiation. Our data provides a set of information in the complex events, following the activation of the GLP-1 receptor in the islets of Langerhans.