Table of Contents
ISRN Endocrinology
Volume 2012, Article ID 608672, 11 pages
http://dx.doi.org/10.5402/2012/608672
Research Article

The Global Transcriptional Response of Isolated Human Islets of Langerhans to Glucagon-Like Peptide-1 Receptor Agonist Liraglutide

1Center of Metabolic Diseases, Beijiao Hospital, Southern Medical University, North 1838 Guangzhou Road, Guangzhou 510515, China
2International Center for Metabolic Diseases, Southern Medical University (SMU), 8 Floor, Life Science Build, North 1838 Guangzhou Road, Guangzhou 510515, China
3Department of Medicine, Cedar-Sinai Medical Center, Los Angeles, CA 90048, USA
4Department of Medicine, VA Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
5UCLA Center for Excellence in Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
6School Biotechnology, Southern Medical University, North 1838 Guangzhou Road, Guangzhou 510515, China

Received 2 August 2012; Accepted 20 August 2012

Academic Editors: H. Galbo, R. Laybutt, and A. Petryk

Copyright © 2012 Xiaoning Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Doyle and J. M. Egan, “Mechanisms of action of glucagon-like peptide 1 in the pancreas,” Pharmacology and Therapeutics, vol. 113, no. 3, pp. 546–593, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. F. Gaddy, M. J. Riedel, S. Pejawar-Gaddy, T. J. Kieffer, and P. D. Robbins, “In vivo expression of HGF/NK1 and GLP-1 from dsAAV vectors enhances pancreatic β-cell proliferation and improves pathology in the db/db mouse model of diabetes,” Diabetes, vol. 59, no. 12, pp. 3108–3116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Xu, D. A. Stoffers, J. F. Habener, and S. Bonner-Weir, “Exendin-4 stimulates both β-cell replication and neogenesis, resulting in increased β-cell mass and improved glucose tolerance in diabetic rats,” Diabetes, vol. 48, no. 12, pp. 2270–2276, 1999. View at Google Scholar · View at Scopus
  4. H. Hui, C. Wright, and R. Perfetti, “Glucagon-like peptide 1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin-secreting cells,” Diabetes, vol. 50, no. 4, pp. 785–796, 2001. View at Google Scholar · View at Scopus
  5. H. Hui, Y. G. Tang, L. Zhu et al., “Glucagon like peptide-1-directed human embryonic stem cells differentiation into insulin-producing cells Via Hedgehog, cAMP, and PI3K pathways,” Pancreas, vol. 39, no. 3, pp. 315–322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Boutant, O. H. Ramos, C. Tourrel-Cuzin et al., “Vasseur-cognet M.COUP-TFII controls mouse pancreatic β-cell mass through GLP-1-β-catenin signaling pathways,” PLoS One, vol. 7, no. 1, Article ID e30847, 2012. View at Google Scholar
  7. H. Hui, A. Nourparvar, X. Zhao, and R. Perfetti, “Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway,” Endocrinology, vol. 144, no. 4, pp. 1444–1455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Farilla, H. Hongxiang, C. Bertolotto et al., “Glucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats,” Endocrinology, vol. 143, no. 11, pp. 4397–4408, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. C. M. Perry, “Liraglutide: a review of its use in the management of type 2 diabetes mellitus,” Drugs, vol. 71, no. 17, pp. 2347–2373, 2011. View at Google Scholar
  10. L. Tian, J. Gao, G. Weng et al., “Comparison of exendin-4 on beta-cell replication in mouse and human islet grafts,” Transplant International, vol. 24, no. 8, pp. 856–864, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Favaro, R. Granata, I. Miceli et al., “The ghrelin gene products and exendin-4 promote survival of human pancreatic islet endothelial cells in hyperglycaemic conditions, through phosphoinositide 3-kinase/Akt, extracellular signal-related kinase (ERK)1/2 and cAMP/protein kinase A (PKA) signalling pathways,” Diabetologia, vol. 55, no. 4, pp. 1058–1070, 2012. View at Google Scholar
  12. L. Farilla, A. Bulotta, B. Hirshberg et al., “Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets,” Endocrinology, vol. 144, no. 12, pp. 5149–5158, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Mancuso, G. Basta, M. Calvitti et al., “Long-term cultured neonatal porcine islet cell monolayers: a potential tissue source for transplant in diabetes,” Xenotransplantation, vol. 13, no. 4, pp. 289–298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Cypryk, T. Vilsbøll, I. Nadel, J. Smyczyńska, J. J. Holst, and A. Lewiński, “Normal secretion of the incretin hormones glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 during gestational diabetes mellitus,” Gynecological Endocrinology, vol. 23, no. 1, pp. 58–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Kappo, E. Ab, F. Hassem et al., “Solution structure of RING finger-like domain of retinoblastoma-binding protein-6 (RBBP6) suggests it functions as a U-box,” The Journal of Biological Chemistry, vol. 287, no. 10, pp. 7146–7158, 2012. View at Google Scholar
  16. M. Rahmani, B. W. Wong, L. Ang et al., “Versican: signaling to transcriptional control pathways,” Canadian Journal of Physiology and Pharmacology, vol. 84, no. 1, pp. 77–92, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Schneider, S. Kostin, C. C. Strøm et al., “S100A4 is upregulated in injured myocardium and promotes growth and survival of cardiac myocytes,” Cardiovascular Research, vol. 75, no. 1, pp. 40–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Courtois and T. D. Gilmore, “Mutations in the NF-κB signaling pathway: implications for human disease,” Oncogene, vol. 25, no. 51, pp. 6831–6843, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Guttmann-Raviv, N. Shraga-Heled, A. Varshavsky, C. Guimaraes-Sternberg, O. Kessler, and G. Neufeld, “Semaphorin-3A and semaphorin-3F work together to repel endothelial cells and to inhibit their survival by induction of apoptosis,” The Journal of Biological Chemistry, vol. 282, no. 36, pp. 26294–26305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. Kushner, L. Simpson, L. M. Wartschow et al., “Phosphatase and tensin homolog regulation of islet growth and glucose homeostasis,” The Journal of Biological Chemistry, vol. 280, no. 47, pp. 39388–39393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Park, X. Dong, T. L. Fisher et al., “Exendin-4 uses Irs2 signaling to mediate pancreatic β cell growth and function,” The Journal of Biological Chemistry, vol. 281, no. 2, pp. 1159–1168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. I. A. Urusova, L. Farilla, H. Hui, E. D'Amico, and R. Perfetti, “GLP-1 inhibition of pancreatic islet cell apoptosis,” Trends in Endocrinology and Metabolism, vol. 15, no. 1, pp. 27–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Wang, R. A. Baiocchi, S. Pal, G. Mosialos, M. Caligiuri, and S. Sif, “The BRG1- and hBRM-associated factor BAF57 induces apoptosis by stimulating expression of the cylindromatosis tumor suppressor gene,” Molecular and Cellular Biology, vol. 25, no. 18, pp. 7953–7965, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Gao and R. E. Scott, “Stable overexpression of specific segments of the P2P-R protein in human MCF-7 cells promotes camptothecin-induced apoptosis,” Journal of Cellular Physiology, vol. 197, no. 3, pp. 445–452, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Larisch, Y. Yi, R. Lotan et al., “A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif,” Nature Cell Biology, vol. 2, no. 12, pp. 915–921, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Benetti, G. D. Sal, M. Monte, G. Paroni, C. Brancolini, and C. Schneider, “The death substrate Gas2 binds m-calpain and increases susceptibility to p53-dependent apoptosis,” EMBO Journal, vol. 20, no. 11, pp. 2702–2714, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Woo, I. Miletich, B. M. Kim, P. T. Sharpe, and R. A. Shivdasani, “Barx1-Mediated inhibition of Wnt signaling in the mouse thoracic foregut controls Tracheo-Esophageal septation and epithelial differentiation,” PLoS ONE, vol. 6, no. 7, Article ID e22493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. A. L. Greenwood, S. Li, K. Jones, and D. A. Melton, “Notch signaling reveals developmental plasticity of Pax4+ pancreatic endocrine progenitors and shunts them to a duct fate,” Mechanisms of Development, vol. 124, no. 2, pp. 97–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Brun, K. H. H. He, R. Lupi et al., “The diabetes-linked transcription factor Pax4 is expressed in human pancreatic islets and is activated by mitogens and GLP-1,” Human Molecular Genetics, vol. 17, no. 4, pp. 478–489, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Y. Miao, Y. Drabsch, R. S. Cross et al., “MYB is essential for mammary tumorigenesis,” Cancer Research, vol. 71, no. 22, pp. 7029–7037, 2011. View at Google Scholar
  31. S. B. Nelson, A. E. Schaffer, and M. Sander, “The transcription factors Nkx6.1 and Nkx6.2 possess equivalent activities in promoting beta-cell fate specification in Pdx1+ pancreatic progenitor cells,” Development, vol. 134, no. 13, pp. 2491–2500, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Zhang, N. A. Saunee, M. B. Breslin, K. Song, and M. S. Lan, “Functional role of an islet transcription factor, INSM1/IA-1, on pancreatic acinar cell trans-differentiation,” Journal of Cellular Physiology, vol. 227, no. 6, pp. 2470–2479, 2012. View at Publisher · View at Google Scholar
  33. E. Ohtsuka-Tsurumi, Y. Saito, T. Yamamoto, T. Voit, M. Kobayashi, and M. Osawa, “Co-localization of fukutin and α-dystroglycan in the mouse central nervous system,” Developmental Brain Research, vol. 152, no. 2, pp. 121–127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. J. S. Zhang, A. Gong, and C. Y. F. Young, “ZNF185, an actin-cytoskeleton-associated growth inhibitory LIM protein in prostate cancer,” Oncogene, vol. 26, no. 1, pp. 111–122, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Hui and R. Perfetti, “Pancreas duodenum homeobox-1 regulates pancreas development during embryogenesis and islet cell function in adulthood,” European Journal of Endocrinology, vol. 146, no. 2, pp. 129–141, 2002. View at Google Scholar · View at Scopus