Table of Contents
ISRN Biomathematics
Volume 2012, Article ID 613174, 7 pages
http://dx.doi.org/10.5402/2012/613174
Research Article

Inferring Biologically Relevant Models: Nested Canalyzing Functions

1Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, USA
2Department of Mathematics and Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates

Received 9 March 2012; Accepted 9 April 2012

Academic Editors: J. Chow and J. Fellman

Copyright © 2012 Franziska Hinkelmann and Abdul Salam Jarrah. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Sima, J. Hua, and S. Jung, “Inference of gene regulatory networks using time-series data: a survey,” Current Genomics, vol. 10, no. 6, pp. 416–429, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. S. A. Kauffman, “Metabolic stability and epigenesis in randomly constructed genetic nets,” Journal of Theoretical Biology, vol. 22, no. 3, pp. 437–467, 1969. View at Google Scholar · View at Scopus
  3. R. Thomas, “Boolean formalization of genetic control circuits,” Journal of Theoretical Biology, vol. 42, no. 3, pp. 563–585, 1973. View at Google Scholar · View at Scopus
  4. L. J. Steggles, R. Banks, O. Shaw, and A. Wipat, “Qualitatively modelling and analysing genetic regulatory networks: A Petri net approach,” Bioinformatics, vol. 23, no. 3, pp. 336–343, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Laubenbacher and B. Stigler, “A computational algebra approach to the reverse engineering of gene regulatory networks,” Journal of Theoretical Biology, vol. 229, no. 4, pp. 523–537, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Veliz-Cuba, A. S. Jarrah, and R. Laubenbacher, “Polynomial algebra of discrete models in systems biology,” Bioinformatics, vol. 26, no. 13, Article ID btq240, pp. 1637–1643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. S. Jarrah, B. Raposa, and R. Laubenbacher, “Nested canalyzing, unate cascade, and polynomial functions,” Physica D, vol. 233, no. 2, pp. 167–174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Jarrah and R. Laubenbacher, “Discrete models of biochemical networks: the toric variety of nested canalyzing functions,” in Algebraic Biology, H. Anai, K. Horimoto, and T. Kutsia, Eds., vol. 4545 of Lecture Notes in Computer Science, pp. 15–22, Springer, 2007. View at Google Scholar
  9. E. S. Dimitrova, M. P. V. Licona, J. McGee, and R. Laubenbacher, “Discretization of time series data,” Journal of Computational Biology, vol. 17, no. 6, pp. 853–868, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. E. S. Dimitrova, A. S. Jarrah, R. Laubenbacher, and B. Stigler, “A Gröbner fan method for biochemical network modeling,” in Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC '07), pp. 122–126, Ontario, Canada, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. S. Jarrah, R. Laubenbacher, B. Stigler, and M. Stillman, “Reverse-engineering of polynomial dynamical systems,” Advances in Applied Mathematics, vol. 39, no. 4, pp. 477–489, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Stigler, A. Jarrah, M. Stillman, and R. Laubenbacher, “Reverse engineering of dynamic networks,” Annals of the New York Academy of Sciences, vol. 1115, pp. 168–177, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Raeymaekers, “Dynamics of Boolean networks controlled by biologically meaningful functions,” Journal of Theoretical Biology, vol. 218, no. 3, pp. 331–341, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Shmulevich, H. Lähdesmäki, E. R. Dougherty, J. Astola, and W. Zhang, “The role of certain post classes in Boolean network models of genetic networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 19, pp. 10734–10739, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Gat-Viks and R. Shamir, “Chain functions and scoring functions in genetic networks,” Bioinformatics, vol. 19, no. 1, pp. 108–117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein, “Genetic networks with canalyzing Boolean rules are always stable,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 49, pp. 17102–17107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. H. Waddington, “Canalization of development and the inheritance of acquired characters,” Nature, vol. 150, no. 3811, pp. 563–565, 1942. View at Google Scholar · View at Scopus
  18. S. Harris, B. Sawhill, A. Wuensche, and S. Kauffman, “A model of transcriptional regulatory networks based on biases in the observed regulation rules,” Complex, vol. 7, no. 4, pp. 23–40, 2002. View at Google Scholar
  19. S. Nikolajewa, M. Friedel, and T. Wilhelm, “Boolean networks with biologically relevant rules show ordered behavior,” BioSystems, vol. 90, no. 1, pp. 40–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Kauffman, C. Peterson, B. Samuelssont, and C. Troein, “Random Boolean network models and the yeast transcriptional network,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 14796–14799, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, “The yeast cell-cycle network is robustly designed,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 14, pp. 4781–4786, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Murrugarra and R. Laubenbacher, “The number of multistate nested canalyzing functions,” Physica, vol. 241, no. 10, pp. 929–938, 2012. View at Google Scholar
  23. R. Porreca, E. Cinquemani, J. Lygeros, and G. Ferrari-Trecate, “Identification of genetic network dynamics with unate structure,” Bioinformatics, vol. 26, no. 9, Article ID btq120, pp. 1239–1245, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, vol. 3 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, USA, 1994.
  25. F. Hinkelmann, “Singular implementation of NCF inferring algorithm,” 2010, http://www.math.vt.edu/people/fhinkel/ncf.lib.
  26. W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “Singular 3-1-1—a computer algebra system for polynomial computations,” 2010, http://www.singular.unikl.de.