Table of Contents
ISRN Pharmacology
Volume 2012 (2012), Article ID 623139, 15 pages
http://dx.doi.org/10.5402/2012/623139
Review Article

Designing Paclitaxel Drug Delivery Systems Aimed at Improved Patient Outcomes: Current Status and Challenges

1College of Pharmacy, Idaho State University, Pocatello, ID 83201, USA
2Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN 46208, USA

Received 3 April 2012; Accepted 29 April 2012

Academic Editors: G. A. Gudelsky, T. Irie, J.-A. Mico, and B.-N. Wu

Copyright © 2012 Madhu S. Surapaneni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Mastropaolo, A. Camerman, Y. Luo, G. D. Brayer, and N. Camerman, “Crystal and molecular structure of paclitaxel (taxol),” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 15, pp. 6920–6924, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Farina, The Chemistry and Pharmacology of Taxol and Its Derivatives, Elsevier Science, 1995.
  3. S. C. Kim, D. W. Kim, Y. H. Shim et al., “In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy,” Journal of Controlled Release, vol. 72, no. 1–3, pp. 191–202, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. A. K. Singla, A. Garg, and D. Aggarwal, “Paclitaxel and its formulations,” International Journal of Pharmaceutics, vol. 235, no. 1-2, pp. 179–192, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. W. P. McGuire, E. K. Rowinsky, N. B. Rosenhein et al., “Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms,” Annals of Internal Medicine, vol. 111, no. 4, pp. 273–279, 1989. View at Google Scholar · View at Scopus
  6. F. A. Holmes, R. S. Walters, R. L. Theriault et al., “Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer,” Journal of the National Cancer Institute, vol. 83, no. 24, pp. 1797–1805, 1991. View at Google Scholar · View at Scopus
  7. C. Dumontet and B. I. Sikic, “Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death,” Journal of Clinical Oncology, vol. 17, no. 3, pp. 1061–1070, 1999. View at Google Scholar · View at Scopus
  8. M. E. Stearns and M. Wang, “Taxol blocks processes essential for prostate tumor cell (PC-3 ML) invasion and metastases,” Cancer Research, vol. 52, no. 13, pp. 3776–3781, 1992. View at Google Scholar · View at Scopus
  9. L. He, G. L. Wang, and Q. Zhang, “An alternative paclitaxel microemulsion formulation: hypersensitivity evaluation and pharmacokinetic profile,” International Journal of Pharmaceutics, vol. 250, no. 1, pp. 45–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. K. C. Nicolaou, Z. Yang, J. J. Liu et al., “Total synthesis of taxol,” Nature, vol. 367, no. 6464, pp. 630–634, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. R. A. Holton, C. Somoza, H. B. Kim et al., “First total synthesis of taxol,” Journal of the American Chemical Society, vol. 116, no. 4, pp. 1597–1598, 1994. View at Google Scholar · View at Scopus
  12. P. A. Wander, M. G. Natchus, and A. J. Shuker, “Towards the total synthesis of taxol and its analogues,” in Taxol: Science and applications, M. Suffness, Ed., pp. 123–190, CRC Press, New York, NY, USA, 1995. View at Google Scholar
  13. R. M. Straubinger, “Biopharmaceutics of paclitaxel (Taxol): formulation, activity and pharmacokinetics,” in Taxol: Science and Applications, M. Suffness, Ed., pp. 237–258, CRC Press, 1996. View at Google Scholar
  14. P. Couvreur, P. Tulkens, M. Roland, A. Trouet, and P. Speiser, “Nanocapsules: a new type of lysosomotropic carrier,” FEBS Letters, vol. 84, no. 2, pp. 323–326, 1977. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Couvreur, B. Kante, V. Lenaerts, V. Scailteur, M. Roland, and P. Speiser, “Tissue distribution of antitumor drugs associated with polyalkylcyanoacrylate nanoparticles,” Journal of Pharmaceutical Sciences, vol. 69, no. 2, pp. 199–202, 1980. View at Google Scholar · View at Scopus
  16. J. D. Adams, K. P. Flora, B. R. Goldspiel, J. W. Wilson, and R. Finley, “Taxol: a history of pharmaceutical development and current pharmaceutical concerns,” Journal of the National Cancer Institute. Monographs, no. 15, pp. 141–147, 1993. View at Google Scholar · View at Scopus
  17. P. Couvreur, P. Tulkens, M. Roland, A. Trouet, and P. Speiser, “Nanocapsules: a new type of lysosomotropic carrier,” FEBS Letters, vol. 84, no. 2, pp. 323–326, 1977. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Mellado, N. F. Magri, D. G. I. Kingston, R. Garcia-Arenas, G. A. Orr, and S. B. horwitz, “Preparation and biological activity of taxol acetates,” Biochemical and Biophysical Research Communications, vol. 124, no. 2, pp. 329–336, 1984. View at Google Scholar · View at Scopus
  19. H. M. Deutsch, J. A. Glinski, M. Hernandez et al., “Synthesis of congeners and prodrugs. 3. Water-soluble prodrugs of taxol with potent antitumor activity,” Journal of Medicinal Chemistry, vol. 32, no. 4, pp. 788–792, 1989. View at Google Scholar · View at Scopus
  20. K. C. Nicolaou, C. Riemer, M. A. Kerr, D. Rideout, and W. Wrasidio, “Design, synthesis and biological activity of protaxols,” Nature, vol. 364, no. 6436, pp. 464–466, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. R. B. Greenwald, A. Pendri, D. Bolikal, and C. W. Gilbert, “Highly water soluble taxol derivatives: 2'-Polyethyleneglycol esters as potential prodrugs,” Bioorganic and Medicinal Chemistry Letters, vol. 4, no. 20, pp. 2465–2470, 1994. View at Publisher · View at Google Scholar · View at Scopus
  22. R. B. Greenwald, C. W. Gilbert, A. Pendri, C. D. Conover, J. Xia, and A. Martinez, “Water soluble taxol: 2'-poly(ethylene glycol) ester prodrugs-design and in vivo effectiveness,” Journal of Medicinal Chemistry, vol. 39, no. 2, pp. 424–431, 1996. View at Google Scholar · View at Scopus
  23. H. Alkan-Onyuksel, S. Ramakrishnan, H. B. Chai, and J. M. Pezzuto, “A mixed micellar formulation suitable for the parenteral administration of taxol,” Pharmaceutical Research, vol. 11, no. 2, pp. 206–212, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Merisko-Liversidge, P. Sarpotdar, J. Bruno et al., “Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs,” Pharmaceutical Research, vol. 13, no. 2, pp. 272–278, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. P. P. Constantinides, K. J. Lambert, A. K. Tustian et al., “Formulation development and antitumor activity of a filter-sterilizable emulsion of paclitaxel,” Pharmaceutical Research, vol. 17, no. 2, pp. 175–182, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. R. B. Weiss, R. C. Donehower, P. H. Wiernik et al., “Hypersensitivity reactions from taxol,” Journal of Clinical Oncology, vol. 8, no. 7, pp. 1263–1268, 1990. View at Google Scholar · View at Scopus
  27. E. K. Rowinsky, E. A. Eisenhauer, V. Chaudhry, S. G. Arbuck, and R. C. Donehower, “Clinical toxicities encountered with paclitaxel (Taxol),” Seminars in Oncology, vol. 20, no. 4, pp. 1–15, 1993. View at Google Scholar · View at Scopus
  28. W. Lorenz, H. J. Reimann, A. Schmal et al., “Histamine release in dogs by cremophor E1 and its derivatives: oxethylated oleic acid is the most effective constituent,” Agents and Actions, vol. 7, no. 1, pp. 63–67, 1977. View at Google Scholar · View at Scopus
  29. D. Dye and J. Watkins, “Suspected anaphylactic reaction to Cremophor EL,” BMJ, vol. 280, no. 6228, article 1353, 1980. View at Google Scholar · View at Scopus
  30. K. Paál, J. Müller, and L. Hegedûs, “High affinity binding of paclitaxel to human serum albumin,” European Journal of Biochemistry, vol. 268, no. 7, pp. 2187–2191, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Desai, V. Trieu, Z. Yao et al., “Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel,” Clinical Cancer Research, vol. 12, no. 4, pp. 1317–1324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. N. K. Ibrahim, N. Desai, S. Legha et al., “Phase I and pharmacokinetic study of ABI-007, a cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel,” Clinical Cancer Research, vol. 8, no. 5, pp. 1038–1044, 2002. View at Google Scholar · View at Scopus
  33. C. Fonseca, S. Simões, and R. Gaspar, “Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity,” Journal of Controlled Release, vol. 83, no. 2, pp. 273–286, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Mu and S. S. Feng, “A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS,” Journal of Controlled Release, vol. 86, no. 1, pp. 33–48, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Brannon-Peppas, “Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery,” International Journal of Pharmaceutics, vol. 116, no. 1, pp. 1–9, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Maincent, R. Le Verge, and P. Sado, “Disposition kinetics and oral bioavailability of vincamine-loaded polyalkyl cyanoacrylate nanoparticles,” Journal of Pharmaceutical Sciences, vol. 75, no. 10, pp. 955–958, 1986. View at Google Scholar · View at Scopus
  37. A. Rolland, “Clinical pharmacokinetics of doxorubicin in hepatoma patients after a single intravenous injection of free or nanoparticle-bound anthracycline,” International Journal of Pharmaceutics, vol. 54, no. 2, pp. 113–121, 1989. View at Google Scholar · View at Scopus
  38. D. Sharma, T. P. Chelvi, J. Kaur et al., “Novel Taxol formulation: polyvinylpyrrolidone nanoparticle- encapsulated Taxol for drug delivery in cancer therapy,” Oncology Research, vol. 8, no. 7-8, pp. 281–286, 1996. View at Google Scholar · View at Scopus
  39. J. C. Leroux, E. Doelker, and R. Gurny, “The use of drug loaded nanoparticles in cancer chemotherapy,” in Microencapsulation: Methods and Industrial Applications, S. Benita, Ed., pp. 535–575, Marcel Dekker, New York, NY, USA, 1996. View at Google Scholar
  40. W. L. Monsky, D. Fukumura, T. Gohongi et al., “Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor,” Cancer Research, vol. 59, no. 16, pp. 4129–4135, 1999. View at Google Scholar · View at Scopus
  41. P. Beck, J. Kreuter, R. Reszka, and I. Fichtner, “Influence of polybutylcyanoacrylate nanoparticles and liposomes on the efficacy and toxicity of the anticancer drug mitoxantrone in murine tumour models,” Journal of Microencapsulation, vol. 10, no. 1, pp. 101–114, 1993. View at Google Scholar · View at Scopus
  42. M. Simeonova, M. Ilarionova, T. Ivanova, C. Konstantinov, and D. Todorov, “Nanoparticles as drugs carriers for vinblastine. acute toxicity of vinblastine in a free form and associated to polybutylcyanoacrylate nanoparticles,” Acta Physiologica et Pharmacologica Bulgarica, vol. 17, no. 4, pp. 43–49, 1991. View at Google Scholar · View at Scopus
  43. A. Oliver, “Taxol: finite supply and increasing demand,” Montana Pharmacist, vol. 17, pp. 17–18, 1993. View at Google Scholar
  44. S. Bennis, C. Chapey, P. Couvreur, and J. Robert, “Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture,” European Journal of Cancer A, vol. 30, no. 1, pp. 89–93, 1994. View at Google Scholar · View at Scopus
  45. E. K. Rowinsky and R. C. Donehower, “Drug therapy: paclitaxel,” The New England Journal of Medicine, vol. 332, no. 15, pp. 1004–1014, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Magenheim and S. Benita, “Nanoparticle characterization: a comprehensive physicochemical approach,” Socialism, vol. 1, no. 4, pp. 221–241, 1991. View at Google Scholar · View at Scopus
  47. F. Si-Shen and H. Guofeng, “Effects of emulsifiers on the controlled release of paclitaxel (Taxol) from nanospheres of biodegradable polymers,” Journal of Controlled Release, vol. 71, no. 1, pp. 53–69, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. R. H. Müller and K. Peters, “Nanosuspensions for the formulation of poorly soluble drugs. I. preparation by a size-reduction technique,” International Journal of Pharmaceutics, vol. 160, no. 2, pp. 229–237, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Soon-Shiong, N. P. Desai, M. W. Grinstaff, P. Sandford, A. Suslick, and S. Kenneth, “Method for in vivo delivery of substantially water insoluble pharmacologically active agents and composition,” USA Patent 5, 560, 933, October 1996.
  50. A. Sharma, E. Mayhew, and R. M. Straubinger, “Antitumor effect of taxol-containing liposomes in a taxol-resistant murine tumor model,” Cancer Research, vol. 53, no. 24, pp. 5877–5881, 1993. View at Google Scholar · View at Scopus
  51. P. Crosasso, M. Ceruti, P. Brusa, S. Arpicco, F. Dosio, and L. Cattel, “Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes,” Journal of Controlled Release, vol. 63, no. 1-2, pp. 19–30, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Ceruti, P. Crosasso, P. Brusa, S. Arpicco, F. Dosio, and L. Cattel, “Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing water-soluble prodrugs of paclitaxel,” Journal of Controlled Release, vol. 63, no. 1-2, pp. 141–153, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Sharma and R. M. Straubinger, “Novel taxol formulations: preparation and characterization of taxol-containing liposomes,” Pharmaceutical Research, vol. 11, no. 6, pp. 889–896, 1994. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Sampedro, J. Partika, P. Santalo, A. M. Molins-Pujol, J. Bonal, and R. Perez-Soler, “Liposomes as carriers of different new lipophilic antitumour drugs: a preliminary report,” Journal of Microencapsulation, vol. 11, no. 3, pp. 309–318, 1994. View at Google Scholar · View at Scopus
  55. M. H. Bartoli, M. Boitard, H. Fessi et al., “In vitro and in vivo antitumoral activity of free, and encapsulated taxol,” Journal of Microencapsulation, vol. 7, no. 2, pp. 191–197, 1990. View at Publisher · View at Google Scholar · View at Scopus
  56. R. M. Straubinger, A. Sharma, M. Murray, and E. Mayhew, “Novel Taxol formulations: taxol-containing liposomes,” Journal of the National Cancer Institute. Monographs, no. 15, pp. 69–78, 1993. View at Google Scholar · View at Scopus
  57. J. M. Meerum Terwogt, B. Nuijen, W. W. Ten Bokkel Huinink, and J. H. Beijnen, “Alternative formulations of paclitaxel,” Cancer Treatment Reviews, vol. 23, no. 2, pp. 87–95, 1997. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Nuijen, M. Bouma, J. H. M. Schellens, and J. H. Beijnen, “Progress in the development of alternative pharmaceutical formulations of taxanes,” Investigational New Drugs, vol. 19, no. 2, pp. 143–153, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. B. D. Tarr and S. H. Yalkowsky, “A new parenteral vehicle for the adminstration of some poorly water soluble anti-cancer drugs,” Journal of Parenteral Science and Technology, vol. 41, no. 1, pp. 31–33, 1987. View at Google Scholar · View at Scopus
  60. B. D. Tarr, T. G. Sambandan, and S. H. Yalkowsky, “A new parental emulsion for the administration of taxol,” Pharmaceutical Research, vol. 4, no. 2, pp. 162–165, 1987. View at Google Scholar · View at Scopus
  61. P. Kan, Z. B. Chen, C. J. Lee, and I. M. Chu, “Development of nonionic surfactant/phospholipid o/w emulsion as a paclitaxel delivery system,” Journal of Controlled Release, vol. 58, no. 3, pp. 271–278, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Simamora, R. M. Dannenfelser, S. E. Tabibi, and S. H. Yalkowsky, “Emulsion formulations for intravenous administration of paclitaxel,” PDA Journal of Pharmaceutical Science and Technology, vol. 52, no. 4, pp. 170–172, 1998. View at Google Scholar · View at Scopus
  63. B. B. Lundberg, “A submicron lipid emulsion coated with amphipathic polyethylene glycol for parenteral administration of paclitaxel (Taxol),” Journal of Pharmacy and Pharmacology, vol. 49, no. 1, pp. 16–21, 1997. View at Google Scholar · View at Scopus
  64. B. B. Lundberg, V. Risovic, M. Ramaswamy, and K. M. Wasan, “A lipophilic paclitaxel derivative incorporated in a lipid emulsion for parenteral administration,” Journal of Controlled Release, vol. 86, no. 1, pp. 93–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Yokoyama, M. Miyauchi, N. Yamada et al., “Characterization and anticancer activity of the micelle-forming polymeric anticancer drug Adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer,” Cancer Research, vol. 50, no. 6, pp. 1693–1700, 1990. View at Google Scholar · View at Scopus
  66. K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, and Y. Sakurai, “Block copolymer micelles as vehicles for drug delivery,” Journal of Controlled Release, vol. 24, no. 1–3, pp. 119–132, 1993. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Ramaswamy, X. Zhang, H. M. Burt, and K. M. Wasan, “Human plasma distribution of free paclitaxel and paclitaxel associated with diblock copolymers,” Journal of Pharmaceutical Sciences, vol. 86, no. 4, pp. 460–464, 1997. View at Publisher · View at Google Scholar · View at Scopus
  68. X. Zhang, H. M. Burt, D. Von Hoff et al., “An investigation of the antitumour activity and biodistribution of polymeric micellar paclitaxel,” Cancer Chemotherapy and Pharmacology, vol. 40, no. 1, pp. 81–86, 1997. View at Publisher · View at Google Scholar · View at Scopus
  69. X. Zhang, H. M. Burt, G. Mangold et al., “Anti-tumor efficacy and biodistribution of intravenous polymeric micellar paclitaxel,” Anti-Cancer Drugs, vol. 8, no. 7, pp. 696–701, 1997. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Miwa, A. Ishibe, M. Nakano et al., “Development of novel chitosan derivatives as micellar carriers of taxol,” Pharmaceutical Research, vol. 15, no. 12, pp. 1844–1850, 1998. View at Publisher · View at Google Scholar · View at Scopus
  71. J. D. Jonkman-de Vries, K. P. Flora, A. Bult, and J. H. Beijnen, “Pharmaceutical development of (investigational) anticancer agents for parenteral use—A review,” Drug Development and Industrial Pharmacy, vol. 22, no. 6, pp. 475–494, 1996. View at Google Scholar · View at Scopus
  72. G. L. Flynn, “Solubility concepts and their applications to the formulation of pharmaceutical systems,” Journal of Parenteral Science and Technology, vol. 38, no. 5, pp. 202–209, 1984. View at Google Scholar · View at Scopus
  73. B. D. Tarr and S. H. Yalkowsky, “A new parenteral vehicle for the adminstration of some poorly water soluble anti-cancer drugs,” Journal of Parenteral Science and Technology, vol. 41, no. 1, pp. 31–33, 1987. View at Google Scholar · View at Scopus
  74. J. Szejtli, “Cyclodextrins in drug formulations,” Pharmaceutical Technology, pp. 16–24, 1991. View at Google Scholar
  75. U. S. Sharma, S. V. Balasubbamanian, and R. M. Straubinger, “Pharmaceutical and physical properties of paclitaxel (Taxol) complexes with cyclodextrins,” Journal of Pharmaceutical Sciences, vol. 84, no. 10, pp. 1223–1230, 1995. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Cserhati, E. Forgacs, and J. Hollo, “Interaction of taxol and other anticancer drugs with alpha-cyclodextrin,” Journal of Pharmaceutical and Biomedical Analysis, vol. 13, pp. 533–541, 1995. View at Google Scholar
  77. W. Mellado, N. F. Magri, D. G. I. Kingston, R. Garcia-Arenas, G. A. Orr, and S. B. Horwitz, “Preparation and biological activity of taxol acetates,” Biochemical and Biophysical Research Communications, vol. 124, no. 2, pp. 329–336, 1984. View at Google Scholar · View at Scopus
  78. B. Nuijen, M. Bouma, J. H. M. Schellens, and J. H. Beijnen, “Progress in the development of alternative pharmaceutical formulations of taxanes,” Investigational New Drugs, vol. 19, no. 2, pp. 143–153, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. D. M. Vyas, H. Wong, A. R. Crosswell et al., “Synthesis and antitumor evaluation of water soluble taxol phosphates,” Bioorganic and Medicinal Chemistry Letters, vol. 3, no. 6, pp. 1357–1360, 1993. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Ueda, A. B. Mikkilineni, J. O. Knipe, W. C. Rose, A. M. Casazza, and D. M. Vyas, “Novel water soluble phosphate prodrugs of taxol possessing in vivo antitumor activity,” Bioorganic and Medicinal Chemistry Letters, vol. 3, no. 8, pp. 1761–1766, 1993. View at Publisher · View at Google Scholar · View at Scopus
  81. C. Li, D. Yu, T. Inoue et al., “Synthesis and evaluation of water-soluble polyethylene glycol-paclitaxel conjugate as a paclitaxel prodrug,” Anti-Cancer Drugs, vol. 7, no. 6, pp. 642–648, 1996. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Pendri, C. D. Conover, and R. B. Greenwald, “Antitumor activity of paclitaxel-2'-glycinate conjugated to poly(ethylene glycol): a water-soluble prodrug,” Anti-Cancer Drug Design, vol. 13, no. 5, pp. 387–395, 1998. View at Google Scholar · View at Scopus
  83. F. Dosio, P. Brusa, P. Crosasso, S. Arpicco, and L. Cattel, “Preparation, characterization and properties in vitro and in vivo of a paclitaxel-albumin conjugate,” Journal of Controlled Release, vol. 47, no. 3, pp. 293–304, 1997. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Presenti, C. Franzetti, and G. Biasoli, “Synthesis and biological activity of water soluble polymer-bound taxol derivatives,” Proceedings of the American Association for Cancer Research, vol. 36, article 307, 1995. View at Google Scholar
  85. A. W. Heldman, L. Cheng, G. M. Jenkins et al., “Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis,” Circulation, vol. 103, no. 18, pp. 2289–2295, 2001. View at Google Scholar · View at Scopus
  86. P. W. Serruys, P. De Jaegere, F. Kiemeneij et al., “A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease,” The New England Journal of Medicine, vol. 331, no. 8, pp. 489–495, 1994. View at Publisher · View at Google Scholar · View at Scopus
  87. E. S. Park, M. Maniar, and J. C. Shah, “Biodegradable polyanhydride devices of cefazolin sodium, bupivacaine, and taxol for local drug delivery: preparation, and kinetics and mechanism of in vitro release,” Journal of Controlled Release, vol. 52, no. 1-2, pp. 179–189, 1998. View at Publisher · View at Google Scholar · View at Scopus
  88. M. P. Wu, J. A. Tamada, H. Brem, and R. Langer, “In vivo versus in vitro degradation of controlled release polymers for intracranial surgical therapy,” Journal of Biomedical Materials Research, vol. 28, no. 3, pp. 387–395, 1994. View at Google Scholar · View at Scopus
  89. C. I. Winternitz, J. K. Jackson, A. M. Oktaba, and H. M. Burt, “Development of a polymeric surgical paste formulation for taxol,” Pharmaceutical Research, vol. 13, no. 3, pp. 368–375, 1996. View at Publisher · View at Google Scholar · View at Scopus