Table of Contents
ISRN Applied Mathematics
Volume 2012, Article ID 623484, 12 pages
http://dx.doi.org/10.5402/2012/623484
Research Article

GPC with Structured Perturbations: The Influence of Prefiltering and Terminal Equality Constraints

Departmento de Sistemas de Comunicación y Control, UNED, Juan del Rosal 16, 28040 Madrid, Spain

Received 5 June 2012; Accepted 4 October 2012

Academic Editors: T. Chu, L. Guo, and M. N. Hamdan

Copyright © 2012 C. Mañoso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Maciejowski, Predictive Control with Constraints, Prentice Hall, Harlow, UK, 2002.
  2. E. F. Camacho and C. Bordóns, Model Predictive Control, Springer, London, UK, 2nd edition, 2004.
  3. D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive control—part I. The basic algorithm,” Automatica, vol. 23, no. 2, pp. 137–148, 1987. View at Google Scholar · View at Scopus
  4. D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive control—part II extensions and interpretations,” Automatica, vol. 23, no. 2, pp. 149–160, 1987. View at Google Scholar · View at Scopus
  5. R. R. Bitmead, M. Gevers, and V. Wertz, Adaptive Optimal Control: the Thinking Man's GPC, Prentice Hall International, 1990.
  6. B. D. Robinson and D. W. Clarke, “Robustness effects of a prefilter in generalised predictive control,” IEE Proceedings D, vol. 138, no. 1, pp. 2–8, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  7. R. Soeterboek, Predictive Control. A Unified Approach, Prentice Hall, 1992.
  8. D. Megías, J. Serrano, and C. de Prada, “Uncertainty treatment in GPC: design of T polynomial,” in European Control Conference (ECC '77), 1997.
  9. T.-W. Yoon and D. W. Clarke, “Observer design in receding-horizon predictive control,” International Journal of Control, vol. 61, no. 1, pp. 171–191, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. J. A. Rossiter, Model Based Predictive Control. A Practical Approach, CRC Press, 2003.
  11. C. Mañoso, A. P. de Madrid, R. Hernández, and S. Dormido, “Robust stability of GPC: the influence of prefiltering and terminal equality constraints,” in Proceedings Volume from the IFAC Conference Control Systems Design, Bratislava, Slovakia, 2000.
  12. D. W. Clarke and R. Scattolini, “Constrained receding-horizon predictive control,” IEE Proceedings D, vol. 138, no. 4, pp. 347–354, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  13. C. Mañoso, R. Hernández, A. P. de Madrid, and S. Dormido, “Robust stability analysis of predictive controllers using extreme point results,” in Proceedings of the IMACS Multiconference (CESA '96), vol. 1, pp. 483–488, 1996.
  14. C. Mañoso, R. Hernández, A. P. de Madrid, and S. Dormido, “Robust stability analysis of GPC: an application to dead-beat and mean-level predictive controllers,” in Proceedings of the Mediterranean IEEE Conference, p. 78, 1997, CD-ROM Proceedings.
  15. V. L. Kharitonov, “The asymptotic stability of the equilibrium state of a family of systems of linear differential equations,” Differentsial'nye Uravneniya, vol. 14, no. 11, pp. 2086–2088, 1978. View at Google Scholar
  16. A. C. Bartlett, C. V. Hollot, and H. Lin, “Root locations of an entire polytope of polynomials: it suffices to check the edges,” Mathematics of Control, Signals, and Systems, vol. 1, no. 1, pp. 61–71, 1988. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. A. Rantzer, “Stability conditions for polytopes of polynomials,” Transactions on Automatic Control, vol. 37, no. 1, pp. 79–89, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. C. Mañoso, A. P. de Madrid, R. Hernández, and M. Romero, “Prefiltering and robustness of GPC with structured perturbations,” in Proceedings of 2nd Magno Congreso Internacional de Computación, Mexico City, Mexico, 2007.
  19. J. Ackermann, “Parameter Space Design of Robust Control Systems,” IEEE Transactions on Automatic Control, vol. 25, no. 6, pp. 1058–1072, 1980. View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  20. C. Manoso, A. P. de Madrid, R. Hernandez, and S. Dormido, “Robust stability analysis of GPC and CRHPC using the theory of extreme point results,” in Proceedings of the American Control Conference (ACC '99), pp. 2385–2389, June 1999, Paper 0042TM15-4. View at Scopus