Table of Contents Author Guidelines Submit a Manuscript
ISRN Mechanical Engineering
Volume 2012 (2012), Article ID 635268, 8 pages
http://dx.doi.org/10.5402/2012/635268
Research Article

Characterization and Modelling of Circular Piezoelectric Micro Speakers for Audio Acoustic Actuation

Instituto de Microelectrónica de Sevilla-Centro Nacional de Microelectrónica, c/Américo Vespucio s/n., 41092 Sevilla, Spain

Received 23 September 2011; Accepted 30 October 2011

Academic Editors: J. Hu, D. Kalempa, and X. Yang

Copyright © 2012 J. Mendoza-López et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C.-M. Lee and S.-M. Hwang, “Optimization of SPL and THD performance of microspeakers considering coupling effects,” IEEE Transactions on Magnetics, vol. 47, no. 5, pp. 934–937, 2011. View at Publisher · View at Google Scholar
  2. C. M. Lee, J. H. Kwon, K. S. Kim, J. H. Park, and S. M. Hwang, “Design and analysis of microspeakers to improve sound characteristics in a low frequency range,” IEEE Transactions on Magnetics, vol. 46, no. 6, Article ID 5467616, pp. 2048–2051, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. H. Kwon, S. M. Hwang, and K. S. Kim, “Development of slim rectangular microspeaker used for minimultimedia phones,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2704–2706, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. M. Hwang, H. J. Lee, K. S. Hong, B. S. Kang, and G. Y. Hwang, “New development of combined permanent-magnet type microspeakers used for cellular phones,” IEEE Transactions on Magnetics, vol. 41, no. 5, pp. 2000–2003, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. R. Bai, C. Y. Liu, and R. L. Chen, “Optimization of microspeaker diaphragm pattern using combined finite element-lumped parameter models,” IEEE Transactions on Magnetics, vol. 44, no. 8, Article ID 4618654, pp. 2049–2057, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Klippel, “Nonlinear large-signal behavior of electrodynamic loudspeakers at low frequencies,” Journal of the Audio Engineering Society, vol. 40, pp. 483–496, 1992. View at Google Scholar
  7. W. Klippel, “Dynamic measurement and interpretation of the nonlinear parameters of electrodynamic loudspeakers,” Journal of the Audio Engineering Society, vol. 38, no. 12, pp. 944–955, 1990. View at Google Scholar · View at Scopus
  8. S. Yi, M. Yoon, and S. Ur, “Piezoelectric microspeakers with high compressive ZnO film and floating electrode,” Journal of Electroceramics, vol. 23, no. 2-4, pp. 295–300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Belgacem, F. Calame, and P. Muralt, “Piezoelectric micromachined ultrasonic transducers based on PZT films,” in Proceedings of the 15th IEEE International Symposium on Applications of Ferroelectrics (ISAF '06), August 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. C. Ko, Y. C. Kim, S. S. Lee, S. H. Choi, and S. R. Kim, “Micromachined piezoelectric membrane acoustic device,” Sensors and Actuators A, vol. 103, no. 1-2, pp. 130–134, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. D. H. Pearce, A. Hooley, and T. W. Button, “On piezoelectric super-helix actuators,” Sensors and Actuators A, vol. 100, no. 2-3, pp. 281–286, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. K. A. Seffen, “Analysis of smart linear piezoelectric transducers,” Smart Structures and Materials, vol. 3985, pp. 660–671, 2000. View at Google Scholar
  13. T. Pedersen, T. Zawada, K. Hansen, R. Lou-Moeller, and E. Thomsen, “Fabrication of high-frequency pMUT arrays on silicon substrates,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 6, Article ID 5480189, pp. 1470–1477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. L. Vernet, W. Steichen, R. Lardat, O. Garcia, and J. F. Gelly, “PMUTS design optimization for medical probes applications,” in Proceedings of the IEEE Ultrasonics Symposium, pp. 899–902, October 2001. View at Scopus
  15. D. J. Morris, R. F. Need, M. J. Anderson, and D. F. Bahr, “Enhanced actuation and acoustic transduction by pressurization of micromachined piezoelectric diaphragms,” Sensors and Actuators A, vol. 161, no. 1-2, pp. 164–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. R. A. Dorey, F. Dauchy, D. Wang, and R. Berriet, “Fabrication and characterization of annular thickness mode piezoelectric micro ultrasonic transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 12, Article ID 4430024, pp. 2462–2467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Wang, Z. Wang, T. L. Ren et al., “A micromachined piezoelectric ultrasonic transducer operating in d 33 mode using square interdigital electrodes,” IEEE Sensors Journal, vol. 7, no. 7, pp. 967–977, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Liu, C. Oakley, and R. Shandas, “Capacitive micromachined ultrasonic transducers using commercial multi-user MUMPs process: capability and limitations,” Ultrasonics, vol. 49, no. 8, pp. 765–773, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. C. B. Doody, X. Cheng, C. A. Rich, D. F. Lemmerhirt, and R. D. White, “Modeling and characterization of CMOS-fabricated capacitive micromachined ultrasound transducers,” Journal of Microelectromechanical Systems, vol. 20, pp. 104–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. IEEE Standard on Piezoelectricity ANSI/IEEE Std 176-1987, IEEE Ultrasonics, Ferro-electrics, and Frequency Control Society, 1987.
  21. S. A. N. Prasad, Q. Gallas, S. Horowitz et al., “Analytical electroacoustic model of a piezoelectric composite circular plate,” AIAA Journal, vol. 44, no. 10, pp. 2311–2318, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Hong, S. Trolier-McKinstry, R. Smith, S. V. Krishnaswamy, and C. B. Freidhoff, “Vibration of micromachined circular piezoelectric diaphragms,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, no. 4, pp. 697–705, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Anderson, “On the determination of finite integral transforms for forced vibrations of circular plates,” Journal of Sound and Vibration, vol. 9, no. 1, pp. 126–144, 1969. View at Google Scholar · View at Scopus
  24. S. Kopuz, Y. S. Ünlüsoy, and M. Çalişkan, “Integrated FEM/BEM approach to the dynamic and acoustic analysis of plate structures,” Engineering Analysis with Boundary Elements, vol. 17, no. 4, pp. 269–277, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. J. W. S. Rayleigh and R. B. Lindsay, The Theory of Sound, MacMillan, 1894.
  26. P. M. Morse and K. U. Ingard, Theoretical Acoustics, McGraw-Hill, 1968.