Table of Contents
ISRN Pharmaceutics
Volume 2012 (2012), Article ID 636743, 8 pages
http://dx.doi.org/10.5402/2012/636743
Research Article

Development and Stability Studies of Novel Liposomal Vancomycin Formulations

1Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E. 2nd Street, Pomona, CA 91766, USA
2Division of Infectious Disease, Department of Internal Medicine, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA

Received 29 August 2011; Accepted 24 October 2011

Academic Editors: A. A. Abdel-Aziz, A. N. Assimopoulou, and C. Safak

Copyright © 2012 Krishna Muppidi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Zetola, J. S. Francis, E. L. Nuermberger, and W. R. Bishai, “Community-acquired meticillin-resistant Staphylococcus aureus an emerging threat,” The Lancet Infectious Diseases, vol. 5, no. 5, pp. 275–286, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. F. D. Lowy, “Staphylococcus aureus infections,” The New England Journal of Medicine, vol. 339, no. 27, pp. 2026–2027, 1998. View at Google Scholar · View at Scopus
  3. F. D. Lowy, “Is Staphylococcus aureus an intracellular pathogen?” Trends in Microbiology, vol. 8, no. 8, pp. 341–343, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Pumerantz, K. Muppidi, S. Agnihotri et al., “Preparation of liposomal vancomycin and intracellular killing of meticillin-resistant Staphylococcus aureus (MRSA),” International Journal of Antimicrobial Agents, vol. 37, no. 2, pp. 140–144, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. C. O. Onyeji, C. H. Nightingale, and M. N. Marangos, “Enhanced killing of methicillin-resistant Staphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin,” Infection, vol. 22, no. 5, pp. 338–342, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. D. P. Levine, “Vancomycin: a history,” Clinical Infectious Diseases, vol. 42, no. 1, supplement 1, pp. S5–S12, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. R. O'Shea and H. E. Moser, “Physicochemical properties of antibacterial compounds: implications for drug discovery,” Journal of Medicinal Chemistry, vol. 51, no. 10, pp. 2871–2878, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. P. Courvalin, “Vancomycin resistance in gram-positive cocci,” Clinical Infectious Diseases, vol. 42, no. 1, supplement 1, pp. S25–S34, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. R. C. Moellering, “Vancomycin: a 50-year reassessment,” Clinical Infectious Diseases, vol. 42, no. 1, supplement 1, pp. S3–S4, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. D. Bangham, M. M. Standish, and J. C. Watkins, “Diffusion of univalent ions across the lamellae of swollen phospholipids,” Journal of Molecular Biology, vol. 13, no. 1, pp. 238–252, 1965. View at Google Scholar · View at Scopus
  11. S. Vemuri and C. T. Rhodes, “Preparation and characterization of liposomes as therapeutic delivery systems: a review,” Pharmaceutica Acta Helvetiae, vol. 70, no. 2, pp. 95–111, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Chatterjee and D. K. Banerjee, “Preparation, isolation, and characterization of liposomes containing natural and synthetic lipids,” Methods in Molecular Biology, vol. 199, pp. 3–16, 2002. View at Google Scholar · View at Scopus
  13. M. Voinea and M. Simionescu, “Designing of “intelligent” liposomes for efficient delivery of drugs,” Journal of Cellular and Molecular Medicine, vol. 6, no. 4, pp. 465–474, 2002. View at Google Scholar · View at Scopus
  14. I. Bakker-Woudenberg et al., “Long-circulating sterically stabilized liposomes in the treatment of infections,” in Liposomes, pp. 228–260, Elsevier, San Diego, Calif, USA, 2005. View at Google Scholar
  15. C. Kirby and G. Gergoriadis, “Dehydration-rehydration vesicles: a simple method for high yield drug entrapment in liposomes,” Biotechnology, vol. 2, no. 11, pp. 979–984, 1984. View at Google Scholar · View at Scopus
  16. S. B. Kulkarni, G. V. Betageri, and M. Singh, “Factors affecting microencapsulation of drugs in liposomes,” Journal of Microencapsulation, vol. 12, no. 3, pp. 229–246, 1995. View at Google Scholar · View at Scopus
  17. L. Grislain, P. Couvreur, and V. Lenaerts, “Pharmacokinetics and distribution of a biodegradable drug-carrier,” International Journal of Pharmaceutics, vol. 15, no. 3, pp. 335–345, 1983. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Nicolau and G. Poste, “Special issue—liposomes In vivo—foreword,” Biology of the Cell, vol. 47, no. 1, p. R2, 1983. View at Google Scholar
  19. J. E. M. de Steenwinkel, W. van Vianen, M. T. ten Kate et al., “Targeted drug delivery to enhance efficacy and shorten treatment duration in disseminated Mycobacterium avium infection in mice,” Journal of Antimicrobial Chemotherapy, vol. 60, no. 5, pp. 1064–1073, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. I. Bakker-Woudenberg, “Long-circulating sterically stabilized liposomes as carriers of agents for treatment of infection or for imaging infectious foci,” International Journal of Antimicrobial Agents, vol. 19, no. 4, pp. 299–311, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Maurer-Spurej, K. F. Wong, N. Maurer, D. B. Fenske, and P. R. Cullis, “Factors influencing uptake and retention of amino-containing drugs in large unilamellar vesicles exhibiting transmembrane pH gradients,” Biochimica et Biophysica Acta, vol. 1416, no. 1-2, pp. 1–10, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Zadi and G. Gregoriadis, “A novel method for high-yield entrapment of solutes into small liposomes,” Journal of Liposome Research, vol. 10, no. 1, pp. 73–80, 2000. View at Google Scholar · View at Scopus
  23. S. H. Jung, S. H. Jung, H. Seong, S. H. Cho, K. S. Jeong, and B. C. Shin, “Polyethylene glycol-complexed cationic liposome for enhanced cellular uptake and anticancer activity,” International Journal of Pharmaceutics, vol. 382, no. 1-2, pp. 254–261, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. K. E. Anderson, L. A. Eliot, B. R. Stevenson, and J. A. Rogers, “Formulation and evaluation of a folic acid receptor-targeted oral vancomycin liposomal dosage form,” Pharmaceutical Research, vol. 18, no. 3, pp. 316–322, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. J. M. Voyich, K. R. Braughton, D. E. Sturdevant et al., “Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils,” Journal of Immunology, vol. 175, no. 6, pp. 3907–3919, 2005. View at Google Scholar · View at Scopus
  26. M. Kubica, K. Guzik, J. Koziel et al., “A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages,” Plos One, vol. 3, no. 1, 2008. View at Publisher · View at Google Scholar · View at PubMed
  27. S. K. Fridkin, J. Hageman, L. K. McDougal et al., “Epidemiological and microbiological characterization of infections caused by Staphylococcus aureus with reduced susceptibility to vancomycin, United States, 1997—2001,” Clinical Infectious Diseases, vol. 36, no. 4, pp. 429–439, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. B. P. Howden, P. B. Ward, P. G. P. Charles et al., “Treatment outcomes for serious infections caused by methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility,” Clinical Infectious Diseases, vol. 38, no. 4, pp. 521–528, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. A. Soriano, F. Marco, J. A. Martinez et al., “Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia,” Clinical Infectious Diseases, vol. 46, no. 2, pp. 193–200, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. G. Steinkraus, R. White, and L. Friedrich, “Vancomycin MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001–05,” Journal of Antimicrobial Chemotherapy, vol. 60, no. 4, pp. 788–794, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. E. Y. Choi, J. W. Huh, C.-M. Lim et al., “Relationship between the MIC of vancomycin and clinical outcome in patients with MRSA nosocomial pneumonia,” Intensive Care Medicine, vol. 37, no. 4, pp. 639–647, 2011. View at Publisher · View at Google Scholar · View at PubMed
  32. G. Sakoulas, P. A. Moise-Broder, J. Schentag, A. Forrest, R. C. Moellering, and G. M. Eliopoulos, “Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia,” Journal of Clinical Microbiology, vol. 42, no. 6, pp. 2398–2402, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. P. A. Moise-Broder, A. Forrest, M. C. Birmingham, and J. J. Schentag, “Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections,” Clinical Pharmacokinetics, vol. 43, no. 13, pp. 925–942, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Nakamura, M. Takano, M. Yasuhara, and K. I. Inui, “In-vivo clearance study of vancomycin in rats,” Journal of Pharmacy and Pharmacology, vol. 48, no. 11, pp. 1197–1200, 1996. View at Google Scholar · View at Scopus
  35. D. D. Lasic, “Novel applications of liposomes,” Trends in Biotechnology, vol. 16, no. 7, pp. 307–321, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Komatsu, H. Saito, S. Okada, M. Tanaka, M. Egashira, and T. Handa, “Effects of the acyl chain composition of phosphatidylcholines on the stability of freeze-dried small liposomes in the presence of maltose,” Chemistry and Physics of Lipids, vol. 113, no. 1-2, pp. 29–39, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. J. H. Crowe and L. M. Crowe, “Factors affecting the stability of dry liposomes,” Biochimica et Biophysica Acta, vol. 939, no. 2, pp. 327–334, 1988. View at Google Scholar · View at Scopus
  38. J. H. Crowe, F. Tablin, W. F. Wolkers, K. Gousset, N. M. Tsvetkova, and J. Ricker, “Stabilization of membranes in human platelets freeze-dried with trehalose,” Chemistry and Physics of Lipids, vol. 122, no. 1-2, pp. 41–52, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. T. M. Allen, C. Hansen, F. Martin, C. Redemann, and A. F. Yau-Young, “Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo,” Biochimica et Biophysica Acta, vol. 1066, no. 1, pp. 29–36, 1991. View at Publisher · View at Google Scholar · View at Scopus
  40. S. R. Dipali, S. B. Kulkarni, and G. V. Betageri, “Comparative study of separation of non-encapsulated drug from unilamellar liposomes by various methods,” Journal of Pharmacy and Pharmacology, vol. 48, no. 11, pp. 1112–1115, 1996. View at Google Scholar · View at Scopus
  41. W. R. Perkins, S. R. Minchey, P. L. Ahl, and A. S. Janoff, “The determination of liposome captured volume,” Chemistry and Physics of Lipids, vol. 64, no. 1–3, pp. 197–217, 1993. View at Google Scholar · View at Scopus
  42. A. J. Bradley, D. V. Devine, S. M. Ansell, J. Janzen, and D. E. Brooks, “Inhibition of liposome-induced complement activation by incorporated poly(ethylene glycol)-lipids,” Archives of Biochemistry and Biophysics, vol. 357, no. 2, pp. 185–194, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. V. D. Awasthi, D. Garcia, B. A. Goins, and W. T. Phillips, “Circulation and biodistribution profiles of long-circulating PEG-liposomes of various sizes in rabbits,” International Journal of Pharmaceutics, vol. 253, no. 1-2, pp. 121–132, 2003. View at Publisher · View at Google Scholar · View at Scopus