Table of Contents
ISRN Spectroscopy
Volume 2012, Article ID 639041, 6 pages
http://dx.doi.org/10.5402/2012/639041
Research Article

Effect of Annealing on Optical Properties of Glasses

1Department of Physics, Maharshi Dayanand University, Rohtak 124 001, India
2Electronic Science Department, Kurukshetra University, Kurukshetra 136119, India

Received 9 August 2012; Accepted 17 September 2012

Academic Editors: J. Casado, J.-H. Choi, and A. Polimeni

Copyright © 2012 Susheel Arora et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Boussard-Plédel, M. Le Floch, G. Fonteneau et al., “The structure of a boron oxyfluoride glass, an inorganic cross-linked chain polymer,” Journal of Non-Crystalline Solids, vol. 209, no. 3, pp. 247–256, 1997. View at Google Scholar · View at Scopus
  2. G. D. Chryssikos, M. S. Bitsis, J. A. Kapoutsis, and E. I. Kamitsos, “Vibrational investigation of lithium metaborate-metaaluminate glasses and crystals,” Journal of Non-Crystalline Solids, vol. 217, no. 2-3, pp. 278–290, 1997. View at Google Scholar · View at Scopus
  3. C. Boussard-Plédel, G. Fonteneau, and J. Lucas, “Boron oxyfluoride glasses in the BOF system: new polymeric spaghetti-type glasses,” Journal of Non-Crystalline Solids, vol. 188, no. 1-2, pp. 147–152, 1995. View at Google Scholar · View at Scopus
  4. N. Soga, “Elastic moduli and fracture toughness of glass,” Journal of Non-Crystalline Solids, vol. 73, no. 1–3, pp. 305–313, 1985. View at Google Scholar · View at Scopus
  5. I. Z. Hager, “Elastic moduli of boron oxyfluoride glasses: experimental determinations and application of Makishima and Mackenzie's theory,” Journal of Materials Science, vol. 37, no. 7, pp. 1309–1313, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Z. Hager and M. El-Hofy, “Investigation of spectral absorption and elastic moduli of lithium haloborate glasses,” Physica Status Solidi (A) Applied Research, vol. 198, no. 1, pp. 7–17, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. E. Shelby and L. K. Downie, “Properties and structure of sodium fluoroborate glasses,” Physics and Chemistry of Glasses, vol. 30, no. 4, pp. 151–154, 1989. View at Google Scholar · View at Scopus
  8. G. D. Chryssikos, E. I. Kamitsos, A. P. Patsis, M. S. Bitsis, and M. A. Karakassides, “The devitrification of lithium metaborate: polymorphism and glass formation,” Journal of Non-Crystalline Solids, vol. 126, no. 1-2, pp. 42–51, 1990. View at Google Scholar · View at Scopus
  9. E. I. Kamitsos, A. P. Patsis, and G. D. Chryssikos, “Infrared reflectance investigation of alkali diborate glasses,” Journal of Non-Crystalline Solids, vol. 152, no. 2-3, pp. 246–257, 1993. View at Google Scholar · View at Scopus
  10. C. Martin, C. Chaumont, J. P. Sanchez, and J. C. Bernier, “Influence of preparation process on physical properties and devitrification of Li2B2O4 (0,9) LiFe5O8 (0,1)glasses,” Journal De Physique Colloques, vol. 46, no. C8, pp. 585–589, 1985. View at Google Scholar
  11. H. A. McMaster, “Variations of refractive index of glass with time and temperature in annealing region,” Journal of the American Ceramic Society, vol. 28, no. 1, p. 1, 1945. View at Google Scholar
  12. L. W. Tilton, F. W. Rosberry, and F. T. Badger, “Refractive uniformity of a borosilicate glass after different annealing treatments,” Journal of Research of the National Bureau of Standards, vol. 49, no. 1, pp. 21–32, 1952. View at Google Scholar
  13. N. V. Surovtsev, J. Wiedersich, A. E. Batalov, V. N. Novikov, M. A. Ramos, and E. Rössler, “Inelastic light scattering in B2O3 glasses with different thermal histories,” Journal of Chemical Physics, vol. 113, no. 14, pp. 5891–5900, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. S. A. Kartha, M. A. Ittyachen, B. Pradeep, and M. Abdul Khadar, “Effect of annealing on the optical properties of B2O3-Li2O-PbO glass thin films,” Journal of Materials Science Letters, vol. 22, no. 1, pp. 9–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. E. A. Devis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philosophical Magazine, vol. 22, pp. 0903–0922, 1970. View at Google Scholar
  16. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic Absorption of Solids,” Physical Review, vol. 92, no. 5, p. 1324, 1953. View at Publisher · View at Google Scholar · View at Scopus
  17. A. A. Kutub, A. E. Mohamed-Osman, and C. A. Hogarth, “Some studies of the optical properties of copper phosphate glasses containing praseodymium,” Journal of Materials Science, vol. 21, no. 10, pp. 3517–3520, 1986. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Dayanand, G. Bhikshamaiah, and M. Salagram, “IR and optical properties of PbO glass containing a small amount of silica,” Materials Letters, vol. 23, no. 4–6, pp. 309–315, 1995. View at Google Scholar · View at Scopus
  19. K. L. Chopra and S. K. Bahl, “Exponential tail of the optical absorption edge of amorphous semiconductors,” Thin Solid Films, vol. 11, no. 2, pp. 377–388, 1972. View at Google Scholar · View at Scopus