Table of Contents
ISRN Corrosion
Volume 2012 (2012), Article ID 641386, 8 pages
http://dx.doi.org/10.5402/2012/641386
Research Article

Mitigation of Mild Steel Corrosion in Acid by Green Inhibitors: Yeast, Pepper, Garlic, and Coffee

Department of Metallurgical and Material Engineering, Jadavpur University, Kolkata 700032, India

Received 3 October 2012; Accepted 19 October 2012

Academic Editors: C. Gu, C.-H. Hsu, and S. Umoren

Copyright © 2012 Subir Paul and Bikash Kar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Bentiss, M. Traisnel, and M. Lagrenee, “The substituted 1,3,4-oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media,” Corrosion Science, vol. 42, no. 1, pp. 127–146, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Schmitt, “Application of inhibitors for acid media: report prepared for the european federation of corrosion working party on inhibitors,” British Corrosion Journal, vol. 19, no. 4, pp. 165–176, 1984. View at Publisher · View at Google Scholar
  3. P. B. Raja and M. G. Sethuraman, “Natural products as corrosion inhibitor for metals in corrosive media—a review,” Materials Letters, vol. 62, no. 1, pp. 113–116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. Arenas, A. Conde, and J. J. De Damborenea, “Cerium: a suitable green corrosion inhibitor for tinplate,” Corrosion Science, vol. 44, no. 3, pp. 511–520, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Sanaa El-Sawy, M. Yosreya Abu-Ayana, and A. Fikry Abdel-Mohdy, “Some chitin/chitosan derivatives for corrosion protection and waste water treatments,” Anti-Corrosion Methods and Materials, vol. 48, no. 4, pp. 227–235, 2001. View at Publisher · View at Google Scholar
  6. E. Cano, P. Pinilla, J. L. Polo, and J. M. Bastidas, “Copper corrosion inhibition by fast green, fuchsin acid and basic compounds in citric acid solution,” Materials and Corrosion, vol. 54, no. 4, pp. 222–228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. W. Kim, J. G. Kim, and D. J. Choi, “Development of a blended corrosion, scale, and microorganism inhibitor for open recirculating cooling systems,” Materials and Corrosion, vol. 52, no. 9, pp. 697–704, 2001. View at Google Scholar · View at Scopus
  8. G. Moretti, F. Guidi, and G. Grion, “Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid,” Corrosion Science, vol. 46, no. 2, pp. 387–403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. P. B. Raja and M. G. Sethuraman, “Natural products as corrosion inhibitor for metals in corrosive media—a review,” Materials Letters, vol. 62, no. 1, pp. 113–116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. H. Wu, H. N. Murthy, E. J. Hahn, H. L. Lee, and K. Y. Paek, “Efficient extraction of caffeic acid derivatives from adventitious roots of echinacea purpurea,” Czech Journal of Food Sciences, vol. 26, no. 4, pp. 254–258, 2008. View at Google Scholar · View at Scopus
  11. M. Badiea and K. N. Mohana, “Corrosion mechanism of steel and adsorption thermodynamics,” Journal of Materials Engineering and Performance, vol. 18, no. 9, pp. 1264–1271, 2009. View at Google Scholar
  12. R. K. Bhardwaj, H. Glaeser, L. Becquemont, U. Klotz, S. K. Gupta, and M. F. Fromm, “Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4,” Journal of Pharmacology and Experimental Therapeutics, vol. 302, no. 2, pp. 645–650, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. http://en.wikipedia.org/wiki/Piperine.
  14. http://www.coffee-tea.co.uk/caffeine-constituents.php.
  15. http://www.chemistryexplained.com/Bo-Ce/Caffeine.html.
  16. http://www.herballegacy.com/Motteshard_Chemical.html.
  17. http://chestofbooks.com/food/beverages/Alcohol-Properties/Composition-Of-Yeast.html.
  18. E. A. Yamada and V. C. Sgarbieri, “Yeast (Saccharomyces cerevisiae) protein concentrate: preparation, chemical composition, and nutritional and functional properties,” Journal of Agricultural and Food Chemistry, vol. 53, no. 10, pp. 3931–3936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. http://openwetware.org/wiki/Composition_of_Yeast_Nitrogen_Base_%28YNB%29.
  20. http://en.wikipedia.org/wiki/4-Aminobenzoic_acid.
  21. http://en.wikipedia.org/wiki/Niacin.
  22. http://en.wikipedia.org/wiki/Thiamine.