Table of Contents
ISRN Pharmacology
Volume 2012 (2012), Article ID 657472, 8 pages
http://dx.doi.org/10.5402/2012/657472
Research Article

Analgesic and Toxicity Studies of Aminoacetylenic Isoindoline-1,3-dione Derivatives

1Department of Pharmaceutical Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy and Medical Sciences, Petra University, P.O. Box 961343, Amman 11196, Jordan
2Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, Petra University, P.O. Box 961343, Amman 11196, Jordan

Received 21 October 2012; Accepted 28 November 2012

Academic Editors: S. Cuzzocrea, K. Lutfy, and B.-N. Wu

Copyright © 2012 Raghad Shakir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Vane, “COX-2 inhibitors: background knowledge for clinical use. Introduction,” Inflammation Research, vol. 47, supplement 2, p. S77, 1998. View at Google Scholar · View at Scopus
  2. J. Gierse, M. Nickols, K. Leahy et al., “Evaluation of COX-1/COX-2 selectivity and potency of a new class of COX-2 inhibitors,” European Journal of Pharmacology, vol. 588, no. 1, pp. 93–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. N. V. Chandrasekharan, H. Dai, K. L. T. Roos et al., “COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13926–13931, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Dannhardt and W. Kiefer, “Cyclooxygenase inhibitors—current status and future prospects,” European Journal of Medicinal Chemistry, vol. 36, no. 2, pp. 109–126, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Hur, A. T. Chan, A. C. Tramontano, and G. S. Gazelle, “Coxibs versus combination NSAID and PPI therapy for chronic pain: an exploration of the risks, benefits, and costs,” Annals of Pharmacotherapy, vol. 40, no. 6, pp. 1052–1063, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. F. Chen, P. Jobanputra, P. Barton et al., “Cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs (etodolac, meloxicam, celecoxib, rofecoxib, etoricoxib, valdecoxib and lumiracoxib) for osteoarthritis and rheumatoid arthritis: a systematic review and economic evaluation,” Health Technology Assessment, vol. 12, no. 11, pp. 1–278, 2008. View at Google Scholar · View at Scopus
  7. J. R. Vane and R. M. Botting, “The future of NSAID therapy: selective COX-2 inhibitors,” International Journal of Clinical Practice, vol. 54, no. 1, pp. 7–9, 2000. View at Google Scholar · View at Scopus
  8. B. Ringdahl, Z. Muhi-Eldeen, and C. Ljunggren, “Acetylene compounds of potential pharmacological value. XXVIII. Oxotremorine analogues substituted with a methyl group in the lactam ring,” Acta Pharmaceutica Suecica, vol. 16, no. 2, pp. 89–94, 1979. View at Google Scholar · View at Scopus
  9. Z. M. Eldeen, A. Shubber, and N. Musa, “Synthesis and biological evaluation of N-(4-t-amino-2-butynyloxy) and N-(4-t-amino-2-butynyl) phthalimides,” European Journal of Medicinal Chemistry, vol. 15, no. 1, pp. 85–88, 1980. View at Google Scholar · View at Scopus
  10. H. Sano, T. Noguchi, A. Tanatani, Y. Hashimoto, and H. Miyachi, “Design and synthesis of subtype-selective cyclooxygenase (COX) inhibitors derived from thalidomide,” Bioorganic and Medicinal Chemistry, vol. 13, no. 9, pp. 3079–3091, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Al-Qaisi, T. M. Alhussainy, N. A. Qinna, K. Z. Matalka, E. N. Al-Kaissi, and Z. A. Muhi-Eldeen, “Synthesis and pharmacological evaluation of aminoacetylenic isoindoline-1,3-dione derivatives as anti-inflammatory agents,” Arabian Journal of Chemistry. In press. View at Publisher · View at Google Scholar · View at Scopus
  12. Q. H. Chen, P. N. P. Rao, and E. E. Knaus, “Design, synthesis, and biological evaluation of linear 1-(4-, 3- or 2-methylsulfonylphenyl)-2-phenylacetylenes: a novel class of cyclooxygenase-2 inhibitors,” Bioorganic and Medicinal Chemistry, vol. 13, no. 23, pp. 6425–6434, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. N. A. Qinna, Z. A. Muhi-eldeen, M. Ghattas, T. M. Alhussainy, J. Al-Qaisi, and K. Z. Matalka :, “Non-selective inhibition of cyclooxygenase enzymes by aminoacetylenic isoindoline 1,3-diones,” Inflammation & Allergy-Drug Targets, vol. 11, no. 5, pp. 369–374, 2012. View at Google Scholar
  14. K. Z. Matalka, F. Alfarhoud, N. A. Qinna, E. M. Mallah, W. A. Abudieh, and Z. A. Muhi-eldeen, “Anti-inflammatory aminoacetylenic isoindoline-1, 3-dione derivatives modulate cytokines production from different spleen cell populations,” International Immunopharmacology, vol. 14, no. 3, pp. 296–301, 2012. View at Publisher · View at Google Scholar
  15. N. B. Eddy, C. F. Touchberry, and J. E. Lieberman, “Synthetic analgesics; methadone isomers and derivatives,” The Journal of Pharmacology and Experimental Therapeutics, vol. 98, no. 2, pp. 121–137, 1950. View at Google Scholar · View at Scopus
  16. P. Girard, D. Verniers, M. C. Coppé, Y. Pansart, and J. M. Gillardin, “Nefopam and ketoprofen synergy in rodent models of antinociception,” European Journal of Pharmacology, vol. 584, no. 2-3, pp. 263–271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Hunskaar and K. Hole, “The formalin test in mice: dissociation between inflammatory and non-inflammatory pain,” Pain, vol. 30, no. 1, pp. 103–114, 1987. View at Google Scholar · View at Scopus
  18. A. Tjolsen, O. G. Berge, S. Hunskaar, J. H. Rosland, and K. Hole, “The formalin test: an evaluation of the method,” Pain, vol. 51, no. 1, pp. 5–17, 1992. View at Publisher · View at Google Scholar · View at Scopus
  19. B. V. Owoyele, A. B. Nafiu, I. A. Oyewole, L. A. Oyewole, and A. O. Soladoye, “Studies on the analgesic, anti-inflammatory and antipyretic effects of Parquetina nigrescens leaf extract,” Journal of Ethnopharmacology, vol. 122, no. 1, pp. 86–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. D. W. Gronow, “The place of pharmacological treatment of chronic pain,” Anaesthesia and Intensive Care Medicine, vol. 12, no. 2, pp. 39–41, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Burian and G. Geisslinger, “COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites,” Pharmacology and Therapeutics, vol. 107, no. 2, pp. 139–154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. D. L. Simmons, R. M. Botting, and T. Hla, “Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition,” Pharmacological Reviews, vol. 56, no. 3, pp. 387–437, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. J. A. Reichert, R. S. Daughters, R. Rivard, and D. A. Simone, “Peripheral and preemptive opioid antinociception in a mouse visceral pain model,” Pain, vol. 89, no. 2-3, pp. 221–227, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Kurihara, T. Nonaka, and T. Tanabe, “Acetic acid conditioning stimulus induces long-lasting antinociception of somatic inflammatory pain,” Pharmacology Biochemistry and Behavior, vol. 74, no. 4, pp. 841–849, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. J. E. Ghia, F. Crenner, M. H. Metz-Boutigue, D. Aunis, and F. Angel, “The effect of a chromogranin A-derived peptide (CgA4-16) in the writhing nociceptive response induced by acetic acid in rats,” Life Sciences, vol. 75, no. 15, pp. 1787–1799, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Xie, M. Zhang, C. F. Zhang, Z. T. Wang, B. Y. Yu, and J. P. Kou, “Anti-inflammatory and analgesic activities of ethanolic extract and two limonoids from Melia toosendan fruit,” Journal of Ethnopharmacology, vol. 117, no. 3, pp. 463–466, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Euchenhofer, C. Maihöfner, K. Brune, I. Tegeder, and G. Geisslinger, “Differential effect of selective cyclooxygenase-2 (COX-2) inhibitor NS 398 and diclofenac on formalin-induced nociception in the rat,” Neuroscience Letters, vol. 248, no. 1, pp. 25–28, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Daud, N. Habib, and A. S. Riera, “Anti-inflammatory, anti-nociceptive and antipyretic effects of extracts of Phrygilanthus acutifolius flowers,” Journal of Ethnopharmacology, vol. 108, no. 2, pp. 198–203, 2006. View at Publisher · View at Google Scholar · View at Scopus