Table of Contents
ISRN Nanomaterials
Volume 2012 (2012), Article ID 659043, 9 pages
http://dx.doi.org/10.5402/2012/659043
Research Article

Synthesis and Characterization of Gold Nanoparticles with Plasmon Absorbance Wavelength Tunable from Visible to Near Infrared Region

1Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
2Department of Medical Technology, Yancheng Health Vocational and Technical College, Jiangsu, Yancheng 224006, China

Received 31 May 2012; Accepted 26 June 2012

Academic Editors: G. Dzhardimalieva, G.-H. Kim, and G. Skordaris

Copyright © 2012 Weihong Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Maier, “Nanoionics: ion transport and electrochemical storage in confined systems,” Nature Materials, vol. 4, no. 11, pp. 805–815, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Namiki, T. Fuchigami, N. Tada et al., “Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring,” Accounts of Chemical Research, vol. 44, no. 10, pp. 1080–1093, 2011. View at Publisher · View at Google Scholar
  3. R. S. Sundaram, M. Steiner, H.-Y. Chiu et al., “The graphene-gold interface and its implications for nanoelectronics,” Nano Letters, vol. 11, no. 9, pp. 3833–3837, 2011. View at Publisher · View at Google Scholar
  4. A. Bhirde, J. Xie, M. Swierczewska, and X. Chen, “Nanoparticles for cell labeling,” Nanoscale, vol. 3, no. 1, pp. 142–153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. R. A. Frimpong and J. Z. Hilt, “Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications,” Nanomedicine, vol. 5, no. 9, pp. 1401–1414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chemical Society Reviews, vol. 41, no. 6, pp. 2256–2282, 2012. View at Publisher · View at Google Scholar
  7. D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, “Gold nanoparticles for biology and medicine,” Angewandte Chemie, vol. 49, no. 19, pp. 3280–3294, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chemical Society Reviews, vol. 41, no. 7, pp. 2740–2779, 2012. View at Publisher · View at Google Scholar
  9. J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics,” Annual Review of Biomedical Engineering, vol. 5, pp. 285–292, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. E. Skrabalak, L. Au, X. Li, and Y. Xia, “Facile synthesis of Ag nanocubes and Au nanocages,” Nature Protocols, vol. 2, no. 9, pp. 2182–2190, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Zhang, M. R. Langille, M. L. Personick, K. Zhang, S. Li, and C. A. Mirkin, “Concave cubic gold nanocrystals with high-index facets,” Journal of the American Chemical Society, vol. 132, no. 40, pp. 14012–14014, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” Journal of the American Chemical Society, vol. 127, no. 15, pp. 5312–5313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review,” Analytica Chimica Acta, vol. 706, no. 1, pp. 8–24, 2011. View at Publisher · View at Google Scholar
  14. S. M. Marinakos, S. Chen, and A. Chilkoti, “Plasmonic detection of a model analyte in serum by a gold nanorod sensor,” Analytical Chemistry, vol. 79, no. 14, pp. 5278–5283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. T. A. Taton, C. A. Mirkin, and R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science, vol. 289, no. 5485, pp. 1757–1760, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, “A whole blood immunoassay using gold nanoshells,” Analytical Chemistry, vol. 75, no. 10, pp. 2377–2381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Huang, C. He, Y. Zeng et al., “A novel label-free multi-throughput optical biosensor based on localized surface plasmon resonance,” Biosensors and Bioelectronics, vol. 24, no. 7, pp. 2255–2259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Analytical Chemistry, vol. 79, no. 2, pp. 572–579, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” Journal of Physical Chemistry B, vol. 110, no. 39, pp. 19220–19225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” Journal of Physical Chemistry B, vol. 110, no. 37, pp. 18243–18253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Yu and J. Irudayaraj, “Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays,” Biophysical Journal, vol. 93, no. 10, pp. 3684–3692, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. T. K. Sau and C. J. Murphy, “Seeded high yield synthesis of short Au nanorods in aqueous solution,” Langmuir, vol. 20, no. 15, pp. 6414–6420, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. C. J. Murphy, T. K. Sau, A. M. Gole et al., “Anisotropic metal nanoparticles: synthesis, assembly, and optical applications,” Journal of Physical Chemistry B, vol. 109, no. 29, pp. 13857–13870, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chemistry of Materials, vol. 15, no. 10, pp. 1957–1962, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” Journal of Physical Chemistry B, vol. 107, no. 3, pp. 668–677, 2003. View at Publisher · View at Google Scholar · View at Scopus