Table of Contents
ISRN Organic Chemistry
Volume 2012, Article ID 674629, 6 pages
http://dx.doi.org/10.5402/2012/674629
Research Article

Facile Iodine-Catalyzed Michael Addition of Indoles to , -Bis(arylmethylene)cyclopentanones: An Efficient Synthesis of E-2-(3-Indolylphenylmethyl)-5-phenylmethylenecyclopentanones

1Department of Chemistry, Acharya Jagadish Chandra Bose College, Kolkata 700 020, West Bengal, India
2Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India

Received 28 September 2012; Accepted 23 October 2012

Academic Editors: E. Lee-Ruff and J. Tamariz

Copyright © 2012 Rammohan Pal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. M. Trost, “The atom economy—a search for synthetic efficiency,” Science, vol. 254, no. 5037, pp. 1471–1477, 1991. View at Google Scholar · View at Scopus
  2. B. M. Trost, “On inventing reactions for atom economy,” Accounts of Chemical Research, vol. 35, no. 9, pp. 695–705, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Sundberg, The Chemistry of Indoles, Academic Press, New York, NY, USA, 1996.
  4. H. Yamashata and T. Mukaiyama, “Asymmetric Michael addition of thiophenol to maleic acid esters,” Chemistry Letters, vol. 14, no. 3, pp. 363–366, 1985. View at Google Scholar
  5. S. Zhu and T. Cohen, “The preparation of synthetically useful carbonyl-protected δ- and ε-lithio ketones via reductive lithiation,” Tetrahedron, vol. 53, no. 52, pp. 17607–17624, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Emori, T. Arai, H. Sasai, and M. Shibasaki, “A catalytic Michael addition of thiols to α,β-unsaturated carbonyl compounds: asymmetric Michael additions and asymmetric protonafions,” Journal of the American Chemical Society, vol. 120, no. 16, pp. 4043–4044, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. L. T. An, J. P. Zou, L. L. Zhang, and Y. Zhang, “Sulfamic acid-catalyzed Michael addition of indoles and pyrrole to electron-deficient nitroolefins under solvent-free condition,” Tetrahedron Letters, vol. 48, no. 24, pp. 4297–4300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Sri Hari, M. Nagaraju, and M. Marthanda Murthy, “Silica sulfuric acid-catalyzed Friedel-Crafts alkylation of indoles with nitro olefins,” Synthetic Communications, vol. 38, no. 1, pp. 100–105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. G. A. Olah, R. Krishnamurty, and G. K. S. Prakash, “Friedel-Crafts Alkylation,” in Comprehensive Organic Synthesis, B. M. Trost and I. Fleming, Eds., vol. 3, p. 293, Pergamon Press, Oxford, UK, 1st edition, 1991. View at Google Scholar
  10. P. E. Harrington and M. A. Kerr, “Reaction of indoles with electron deficient olefins catalyzed by Yb(OTf)3·3H2O,” Synlett, vol. 1996, no. 11, pp. 1047–1048, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. J. S. Yadav, S. Abraham, B. V. S. Reddy, and G. Sabitha, “InCl3-catalysed conjugate addition of indoles with electron-deficient olefins,” Synthesis, vol. 2001, no. 14, pp. 2165–2169, 2001. View at Google Scholar · View at Scopus
  12. J. Zhou and Y. Tang, “Sidearm effect: improvement of the enantiomeric excess in the asymmetric Michael addition of indoles to alkylidene malonates,” Journal of the American Chemical Society, vol. 124, no. 31, pp. 9030–9031, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. S.-Y. Wang, S.-J. Ji, and T.-P. Loh, “The Michael addition of indole to α,β-unsaturated ketones catalyzed by iodine at room temperature,” Synlett, vol. 2003, no. 15, pp. 2377–2379, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Komoto and S. Kobayashi, “Lewis acid catalysis in supercritical carbon dioxide. Use of poly(ethyleneglycol) derivatives and perfluoroalkylbenzenes as surfactant molecules which enable efficient catalysis in ScCO2,” The Journal of Organic Chemistry, vol. 69, no. 3, pp. 680–688, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. P. Zhan, R. F. Yang, and K. Lang, “Samarium triiodide-catalyzed conjugate addition of indoles with electron-deficient olefins,” Tetrahedron Letters, vol. 46, no. 22, pp. 3859–3862, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Firouzabadi, N. Iranpoor, and F. Nowrouzi, “The facile and efficient Michael addition of indoles and pyrrole to α,β-unsaturated electron-deficient compounds catalyzed by aluminium dodecyl sulfate trihydrate [Al(DS)3]·3H2O in water,” Chemical Communications, no. 6, pp. 789–791, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. Y.-X. Jia, S.-F. Zhu, Y. Yang, and Q.-L. Zhou, “Asymmetric Friedel-Crafts alkylations of indoles with nitroalkenes catalyzed by Zn(II)-bisoxazoline complexes,” The Journal of Organic Chemistry, vol. 71, no. 1, pp. 75–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Bartoli, G. di Antonio, S. Giuli, E. Marcantoni, M. Marcolini, and M. Paoletti, “The CeCl3·7H2O/NaI/SiO2 system as an efficient promoter for the Friedel-Crafts reaction of indoles to nitroalkenes under solvent-free conditions,” Synthesis, vol. 2008, no. 2, pp. 320–324, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. Tu, B. R. Raju, T. R. Liou et al., “An efficient method for the synthesis of α-arylated nitroalkanes and α-arylated hydroximoyl chlorides mediated by AlCl3,” Tetrahedron, vol. 65, no. 12, pp. 2436–2442, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Ji, H. Tong, and Y. Yuan, “Facile and efficient Michael addition of indole to nitroolefins catalyzed by Zn(OAc)2·2H2O,” Synthetic Communications, vol. 41, no. 3, pp. 372–379, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. K. Mallik, R. Pal, and T. K. Mandal, “Facile formation of bis(3-indolyl)methylarenes by iodine-catalyzed reaction of indole with α,α-bis(arylmethylene)ketones and α-substituted arylmethyleneketones in dry ethanol,” Indian Journal of Chemistry B, vol. 46, no. 12, pp. 2056–2059, 2007. View at Google Scholar · View at Scopus
  22. R. Pal, T. K. Mandal, S. Samanta, and A. K. Mallik, “An efficient synthesis of E-2-amino-4-aryl-8-(arylmethylene)-5,6,7,8- tetrahydrobenzo[d]pyrimidines and their lower analogues,” Journal of the Indian Chemical Society, vol. 87, no. 6, pp. 711–715, 2010. View at Google Scholar · View at Scopus
  23. R. Pal, T. K. Mandal, C. Guha, and A. K. Mallik, “Amberlyst-15 catalysed microwave assisted cross-aldol condensation between ketones and aldehydes under solvent free condition,” Journal of the Indian Chemical Society, vol. 88, no. 5, pp. 711–717, 2011. View at Google Scholar