Table of Contents
ISRN Oncology
Volume 2012 (2012), Article ID 694201, 5 pages
http://dx.doi.org/10.5402/2012/694201
Review Article

The Pak4 Protein Kinase in Breast Cancer

Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA

Received 10 October 2012; Accepted 31 October 2012

Academic Editors: O. Hansen, S. Holdenrieder, and V. Lorusso

Copyright © 2012 Audrey Minden. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Wells and G. E. Jones, “The emerging importance of group II PAKs,” Biochemical Journal, vol. 425, no. 3, pp. 465–473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Eswaran, M. Soundararajan, R. Kumar, and S. Knapp, “UnPAKing the class differences among p21-activated kinases,” Trends in Biochemical Sciences, vol. 33, no. 8, pp. 394–403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Dan, A. Kelly, O. Bernard, and A. Minden, “Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin,” The Journal of Biological Chemistry, vol. 276, no. 34, pp. 32115–32121, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Qu, M. S. Cammarano, Q. Shi, K. C. Ha, P. De Lanerolle, and A. Minden, “Activated PAK4 regulates cell adhesion and anchorage-independent growth,” Molecular and Cellular Biology, vol. 21, no. 10, pp. 3523–3533, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Qu, X. Li, B. G. Novitch et al., “PAK4 kinase is essential for embryonic viability and for proper neuronal development,” Molecular and Cellular Biology, vol. 23, no. 20, pp. 7122–7133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Eswaran, M. Soundararajan, and S. Knapp, “Targeting group II PAKs in cancer and metastasis,” Cancer and Metastasis Reviews, vol. 28, no. 1-2, pp. 209–217, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Liu, H. Xiao, Y. Tian et al., “The Pak4 protein kinase plays a key role in cell survival and tumorigenesis in athymic mice,” Molecular Cancer Research, vol. 6, no. 7, pp. 1215–1224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Liu, N. Chen, X. Cui et al., “The protein kinase Pak4 disrupts mammary acinar architecture and promotes mammary tumorigenesis,” Oncogene, vol. 29, no. 44, pp. 5883–5894, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Gnesutta and A. Minden, “Death receptor-induced activation of initiator caspase 8 is antagonized by serine/threonine kinase PAK4,” Molecular and Cellular Biology, vol. 23, no. 21, pp. 7838–7848, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Gnesutta, J. Qu, and A. Minden, “The Serine/Threonine Kinase PAK4 prevents caspase activation and protects cells from apoptosis,” The Journal of Biological Chemistry, vol. 276, no. 17, pp. 14414–14419, 2001. View at Google Scholar · View at Scopus
  11. X. Li and A. Minden, “PAK4 functions in tumor necrosis factor (TNF) α-induced survival pathways by facilitating TRADD binding to the TNF receptor,” The Journal of Biological Chemistry, vol. 280, no. 50, pp. 41192–41200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. G. N. Paliouras, M. A. Naujokas, and M. Park, “Pak4, a novel Gab1 binding partner, modulates cell migration and invasion by the met receptor,” Molecular and Cellular Biology, vol. 29, no. 11, pp. 3018–3032, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Ahmed, K. Shea, J. R. W. Masters, G. E. Jones, and C. M. Wells, “A PAK4-LIMK1 pathway drives prostate cancer cell migration downstream of HGF,” Cellular Signalling, vol. 20, no. 7, pp. 1320–1328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Gringel, D. Walz, G. Rosenberger et al., “PAK4 and αPIX determine podosome size and number in macrophages through localized actin regulation,” Journal of Cellular Physiology, vol. 209, no. 2, pp. 568–579, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Bao, M. Thullberg, H. Zhang, A. Onischenko, and S. Strömblad, “Cell attachment to the extracellular matrix induces proteasomal degradation of p21CIP1 via Cdc42/Rac1 signaling,” Molecular and Cellular Biology, vol. 22, no. 13, pp. 4587–4597, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Whale, F. N. Hashim, S. Fram, G. E. Jones, and C. M. Wells, “Signalling to cancer cell invasion through PAK family kinases,” Frontiers in Bioscience, vol. 16, no. 3, pp. 849–864, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. P. R. Molli, D. Q. Li, B. W. Murray, S. K. Rayala, and R. Kumar, “PAK signaling in oncogenesis,” Oncogene, vol. 28, no. 28, pp. 2545–2555, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Dummler, K. Ohshiro, R. Kumar, and J. Field, “Pak protein kinases and their role in cancer,” Cancer and Metastasis Reviews, vol. 28, no. 1-2, pp. 51–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. G. Callow, S. Zozulya, M. L. Gishizky, B. Jallal, and T. Smeal, “PAK4 mediates morphological changes through the regulation of GEF-H1,” Journal of Cell Science, vol. 118, part 9, pp. 1861–1872, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. G. Callow, F. Clairvoyant, S. Zhu et al., “Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines,” The Journal of Biological Chemistry, vol. 277, no. 1, pp. 550–558, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. A. C. Kimmelman, A. F. Hezel, A. J. Aguirre et al., “Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19372–19377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. H. J. Zhang, M. K. Y. Siu, M. C. W. Yeung et al., “Overexpressed PAK4 promotes proliferation, migration and invasion of choriocarcinoma,” Carcinogenesis, vol. 32, no. 5, pp. 765–771, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. C. M. Wells, A. Abo, and A. J. Ridley, “PAK4 is activated via P13K in HGF-stimulated epithelial cells,” Journal of Cell Science, vol. 115, no. 20, pp. 3947–3956, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. C. M. Wells, A. D. Whale, M. Parsons, J. R. W. Masters, and G. E. Jones, “PAK4: a pluripotent kinase that regulates prostate cancer cell adhesion,” Journal of Cell Science, vol. 123, no. 10, pp. 1663–1673, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Y. So, H. J. Lee, P. Kramata, A. Minden, and N. Suh, “Differential expression of key signaling proteins in MCF10 cell lines, a human breast cancer progression model,” Molecular and Cellular Pharmacology, vol. 4, no. 1, pp. 31–40, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. W. Yu, Y. Kanaan, Y. K. Baed, and E. Gabrielson, “Chromosomal changes in aggressive breast cancers with basal-like features,” Cancer Genetics and Cytogenetics, vol. 193, no. 1, pp. 29–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Karantza-Wadsworth and E. White, “A mouse mammary epithelial cell model to identify molecular mechanisms regulating breast cancer progression,” Methods in Enzymology, vol. 446, pp. 61–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Debnath, K. R. Mills, N. L. Collins, M. J. Reginato, S. K. Muthuswamy, and J. S. Brugge, “The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini,” Cell, vol. 111, no. 1, pp. 29–40, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Gutierrez and R. Schiff, “HER2: biology, detection, and clinical implications,” Archives of Pathology and Laboratory Medicine, vol. 135, no. 1, pp. 55–62, 2011. View at Google Scholar · View at Scopus
  30. V. Karantza-Wadsworth, S. Patel, O. Kravchuk et al., “Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis,” Genes and Development, vol. 21, no. 13, pp. 1621–1635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Rafn, C. F. Nielsen, S. H. Andersen et al., “ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression,” Molecular Cell, vol. 45, no. 6, pp. 764–776, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. S. W. Wallace, J. Durgan, D. Jin, and A. Hall, “Cdc42 regulates apical junction formation in human bronchial epithelial cells through PAK4 and Par6B,” Molecular Biology of the Cell, vol. 21, no. 17, pp. 2996–3006, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Moreno-Bueno, F. Portillo, and A. Cano, “Transcriptional regulation of cell polarity in EMT and cancer,” Oncogene, vol. 27, no. 55, pp. 6958–6969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Suzuki and S. Ohno, “The PAR-aPKC system: lessons in polarity,” Journal of Cell Science, vol. 119, no. 6, pp. 979–987, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. R. A. Wang, H. Zhang, S. Balasenthil, D. Medina, and R. Kumar, “PAK1 hyperactivation is sufficient for mammary gland tumor formation,” Oncogene, vol. 25, no. 20, pp. 2931–2936, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. L. E. Arias-Romero, O. Villamar-Cruz, A. Pacheco et al., “A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells,” Oncogene, vol. 29, no. 43, pp. 5839–5849, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. H. D. Soule, T. M. Maloney, S. R. Wolman et al., “Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10,” Cancer Research, vol. 50, no. 18, pp. 6075–6086, 1990. View at Google Scholar · View at Scopus
  38. F. R. Miller, S. J. Santner, L. Tait, and P. J. Dawson, “MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ,” Journal of the National Cancer Institute, vol. 92, no. 14, pp. 1185–1186, 2000. View at Google Scholar · View at Scopus
  39. F. Basolo, J. Elliott, L. Tait et al., “Transformation of human beast epithelial cells by c-Ha-ras oncogene,” Molecular Carcinogenesis, vol. 4, no. 1, pp. 25–35, 1991. View at Google Scholar · View at Scopus
  40. P. J. Dawson, S. R. Wolman, L. Tait, G. H. Heppner, and F. R. Miller, “MCF10AT: a model for the evolution of cancer from proliferate breast disease,” American Journal of Pathology, vol. 148, no. 1, pp. 313–319, 1996. View at Google Scholar · View at Scopus
  41. Q. Li, S. R. Mullins, B. F. Sloane, and R. R. Mattingly, “p21-activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer,” Neoplasia, vol. 10, no. 4, pp. 314–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. B. W. Murray, C. Guo, J. Piraino et al., “Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 20, pp. 9446–9451, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. S. Zhao and E. Manser, “Do PAKs make good drug targets?” F1000 Biology Reports, vol. 2, no. 1, article 70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Zhang, J. Wang, Q. Guo et al., “LCH-7749944, a novel and potent p21-activated kinase 4 inhibitor, suppresses proliferation and invasion in human gastric cancer cells,” Cancer Letters, vol. 317, no. 1, pp. 24–32, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. R. H. Daniels, P. S. Hall, and G. M. Bokoch, “Membrane targeting of p21-activated kinase 1 (PAK1) induces neurite outgrowth from PC12 cells,” The EMBO Journal, vol. 17, no. 3, pp. 754–764, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. M. A. Sells, U. G. Knaus, S. Bagrodia, D. M. Ambrose, G. M. Bokoch, and J. Chernoff, “Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells,” Current Biology, vol. 7, no. 3, pp. 202–210, 1997. View at Google Scholar · View at Scopus