Table of Contents
ISRN Spectroscopy
Volume 2012, Article ID 706398, 8 pages
http://dx.doi.org/10.5402/2012/706398
Research Article

Mn3O4 Nanoparticles: Synthesis, Characterization, and Dielectric Properties

1Laboratoire des Matériaux Utiles, Institut National de Recherche et d’Analyse Physico-Chimique, Pôle Technologique de Sidi-Thabet, 2020 Tunis, Tunisia
2Unité de Radiotraitement, Centre National des Sciences et Technologies Nucléaires (CNSTN), Pôle Technologique de Sidi Thabet, 2020 Tunis, Tunisia

Received 11 December 2011; Accepted 2 January 2012

Academic Editors: J. M. Saniger and M. Soylak

Copyright © 2012 Hassouna Dhaouadi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Zarur and J. V. Ying, “Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion,” Nature, vol. 403, no. 6765, pp. 65–67, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. S. A. Majetich and Y. Jin, “Magnetization directions of individual nanoparticles,” Science, vol. 284, no. 5413, pp. 470–473, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Nayral, E. Viala, P. Fau et al., “Synthesis of tin and tin oxide nanoparticles of low size dispersity for application in gas sensing,” Chemistry. A European Journal, vol. 6, no. 22, pp. 4082–4090, 2000. View at Google Scholar · View at Scopus
  4. K. Raj and R. Moskowits, “Commercial applications of Ferro fluids,” Journal of Magnetism and Magnetic Materials, vol. 685, p. 233, 1990. View at Google Scholar
  5. G. R. Mohan, D. Ravinder, A. V. Ramana Reddy, and B. S. Boyanov, “Dielectric properties of polycrystalline mixed nickel-zinc ferrites,” Materials Letters, vol. 40, no. 1, pp. 39–45, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Buckelew, J. R. Galán-Mascarós, and K. R. Dunbar, “Facile conversion of the face-centered cubic prussian-blue material K2[Mn2(CN)6] into the spinel oxide Mn3O4 at the solid/water interface,” Advanced Materials, vol. 14, no. 22, pp. 1646–1648, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. S. T. Myung, S. Komaba, and N. Kumagai, “Hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2,” Electrochimica Acta, vol. 47, no. 20, pp. 3287–3295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. E. J. Grootendorst, Y. Verbeek, and V. Ponec, “The role of the mars and van krevelen mechanism in the selective oxidation of nitrosobenzene and the deoxygenation of nitrobenzene on oxidic catalysts,” Journal of Catalysis, vol. 157, no. 2, pp. 706–712, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. E. R. Stobbe, B. A. De Boer, and J. W. Geus, “The reduction and oxidation behaviour of manganese oxides,” Catalysis Today, vol. 47, no. 1–4, pp. 161–167, 1999. View at Google Scholar · View at Scopus
  10. Y. C. Zhang, T. Qiao, and X. Ya Hu, “Preparation of Mn3O4 nanocrystallites by low-temperature solvothermal treatment of γ-MnOOH nanowires,” Journal of Solid State Chemistry, vol. 177, no. 11, pp. 4093–4097, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Zhang, Z. Yang, Y. Liu, S. Tang, X. Han, and M. Chen, “Controlled synthesis of Mn3O4 nanocrystallites and MnOOH nanorods by a solvothermal method,” Journal of Crystal Growth, vol. 263, no. 1-4, pp. 394–399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Q. Chang, D. P. Yu, Y. Long, J. Xu, X. H. Luo, and R. C. Ye, “Large-scale fabrication of single-crystalline Mn3O4 nanowires via vapor phase growth,” Journal of Crystal Growth, vol. 279, no. 1-2, pp. 88–92, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Du, Y. Gao, L. Chai, G. Zou, Y. Li, and Y. Qian, “Hausmannite Mn3O4 nanorods: synthesis, characterization and magnetic properties,” Nanotechnology, vol. 17, no. 19, article no. 024, pp. 4923–4928, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Salavati-Niasari, F. Davar, and M. Mazaheri, “Synthesis of Mn3O4 nanoparticles by thermal decomposition of a [bis(salicylidiminato)manganese(II)] complex,” Polyhedron, vol. 27, no. 17, pp. 3467–3471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. I. K. Gopalakrishnan, N. Bagkar, R. Ganguly, and S. K. Kulshreshtha, “Synthesis of superparamagnetic Mn3O4 nanocrystallites by ultrasonic irradiation,” Journal of Crystal Growth, vol. 280, no. 3-4, pp. 436–441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Hu, J. Chen, X. Xue, and T. Li, “Synthesis of monodispersed single-crystal compass-shaped Mn3O4 via gamma-ray irradiation,” Materials Letters, vol. 60, no. 3, pp. 383–385, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. K. Apte, S. D. Naik, R. S. Sonawane et al., “Nanosize Mn3O4 (Hausmannite) by microwave irradiation method,” Materials Research Bulletin, vol. 41, no. 3, pp. 647–654, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. W. Chen, J. K. L. Lai, and C. H. Shek, “Nucleation site and mechanism leading to growth of bulk-quantity Mn3O4 nanorods,” Applied Physics Letters, vol. 86, no. 18, Article ID 181911, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Vázquez-Olmos, R. Redón, G. Rodríguez-Gattorno et al., “One-step synthesis of Mn3O4 nanoparticles: structural and magnetic study,” Journal of Colloid and Interface Science, vol. 291, no. 1, pp. 175–180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. H. Wang, D. Y. Geng, Y. J. Zhang, and Z. D. Zhang, “Morphology, structure and magnetic properties of single-crystal Mn3O4 nanorods,” Journal of Crystal Growth, vol. 310, no. 18, pp. 4148–4151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Du, J. Yun, R. K. Dumas et al., “Three-dimensionally intercrossing Mn3O4 nanowires,” Acta Materialia, vol. 56, no. 14, pp. 3516–3522, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Anilkumar and V. Ravi, “Synthesis of nanocrystalline Mn3O4 at 100C,” Materials Research Bulletin, vol. 40, no. 4, pp. 605–609, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Veena Gopalan, K. A. Malini, S. Saravanan, D. Sakthi Kumar, Y. Yoshida, and M. R. Anantharaman, “Evidence for polaron conduction in nanostructured manganese ferrite,” Journal of Physics D, vol. 41, no. 18, Article ID 185005, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. D. Shenoy, P. A. Joy, and M. R. Anantharaman, “Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite,” Journal of Magnetism and Magnetic Materials, vol. 269, no. 2, pp. 217–226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, and A. W. Sleight, “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases,” Journal of Solid State Chemistry, vol. 151, no. 2, pp. 323–325, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. A. P. Ramirez, M. A. Subramanian, M. Gardel et al., “Giant dielectric constant response in a copper-titanate,” Solid State Communications, vol. 115, no. 5, pp. 217–220, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Jha, S. Rai, K. V. Ramanujachary, S. E. Lofland, and A. K. Ganguli, “(La0.4Ba0.4Ca0.2)(Mn0.4Ti 0.6)O3: a new titano-manganate with a high dielectric constant and antiferromagnetic interactions,” Journal of Solid State Chemistry, vol. 177, no. 8, pp. 2881–2888, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. B. V. Prasad, G. Narsinga Rao, J. W. Chen, and D. Suresh Babu, “Abnormal high dielectric constant in SmFeO3 semiconductor ceramics,” Materials Research Bulletin, vol. 46, no. 10, pp. 1670–1673, 2011. View at Publisher · View at Google Scholar
  29. H. Dhaouadi, A. Madani, and F. Touati, “Synthesis and spectroscopic investigations of Mn3O4 nanoparticles,” Materials Letters, vol. 64, no. 21, pp. 2395–2398, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Yan, S. Cheng, R. F. Zhuo et al., “Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties,” Nanotechnology, vol. 20, no. 10, Article ID 105706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Usha and C. K. Mahadevan, “Structure, morphology and electrical properties of Mn3O4 nanocrystals,” Archives of Physics Research, vol. 2, p. 75, 2011. View at Google Scholar
  32. E. Karaoğlu, H. Deligöz, H. Sözeri, A. Baykal, and M. S. Toprak, “Hydrothermal Synthesis and Characterization of PEG-Mn3O4 Nanocomposite,” Nano-Micro Letters, vol. 3, p. 25, 2011. View at Google Scholar
  33. C. Rodriguez, “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B, vol. 192, no. 1-2, pp. 55–69, 1993. View at Google Scholar · View at Scopus
  34. H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallographica, vol. 22, p. 151, 1967. View at Google Scholar
  35. H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, chapter 9, Wiley, New York, NY, USA, 1st edition, 1954.
  36. M. Ishii, M. Nakahira, and T. Yamanaka, “Infrared absorption spectra and cation distributions in (Mn, Fe)3O4,” Solid State Communications, vol. 11, no. 1, pp. 209–212, 1972. View at Google Scholar · View at Scopus
  37. W. Z. Wang, C. K. Xu, G. H. Wang, Y. K. Liu, and C. L. Zheng, “Preparation of smooth single-crystal Mn3O4 nanowires,” Advanced Materials, vol. 14, no. 11, pp. 837–840, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Gupta, A. Verma, S. C. Kashyap, and D. C. Dube, “Microstructural, dielectric and magnetic behavior of spin-deposited nanocrystalline nickel-zinc ferrite thin films for microwave applications,” Journal of Magnetism and Magnetic Materials, vol. 308, no. 1, pp. 137–142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Lanfredi, P. S. Saia, R. Lebullenger, and A. C. Hernandes, “Electric conductivity and relaxation in fluoride, fluorophosphate and phosphate glasses: analysis by impedance spectroscopy,” Solid State Ionics, vol. 146, no. 3-4, pp. 329–339, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. M. Sui, X. Chen, L. Y. Wang et al., “Capping effect of CTAB on positively charged Ag nanoparticles,” Physica E, vol. 33, no. 2, pp. 308–314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Francis, A. Balakrishnan, K. P. Sanosh, and E. Marsano, “Hydroxy propyl cellulose capped silver nanoparticles produced by simple dialysis process,” Materials Research Bulletin, vol. 45, no. 8, pp. 989–992, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Tailhades, B. Gillot, and A. Rousset, “Mixed-valence defect ferrites: a new family of fine powders and thin films of spinel ferrites,” Journal De Physique. IV, vol. 2, no. 1, p. 249, 1997. View at Google Scholar
  43. T. Gao, P. Norby, F. Krumeich, H. Okamoto, R. Nesper, and H. Fjellvåg, “Synthesis and properties of layered-structured Mn5O8 nanorods,” Journal of Physical Chemistry C, vol. 114, no. 2, pp. 922–928, 2010. View at Publisher · View at Google Scholar
  44. V. Berbenni and A. Marini, “Oxidation behaviour of mechanically activated Mn3O4 by TGA/DSC/XRPD,” Materials Research Bulletin, vol. 38, no. 14, pp. 1859–1866, 2003. View at Publisher · View at Google Scholar
  45. H. R. Oswald and M. J. Wanpetich, “Die Kristallstrukturen von Mn5O8 und Cd2Mn3O8,” Helvetica Chimica Acta, vol. 50, p. 2023, 1967. View at Google Scholar
  46. S. Fritsch, J. Sarrias, A. Rousset, and G. U. Kulkarni, “Low-temperature oxidation of Mn3O4 hausmannite,” Materials Research Bulletin, vol. 33, no. 8, pp. 1185–1194, 1998. View at Google Scholar · View at Scopus
  47. J. A. Lee, C. E. Newnham, F. S. Stone, and F. L. Tye, “Thermal decomposition of managanese oxyhydroxide,” Journal of Solid State Chemistry, vol. 31, no. 1, pp. 81–93, 1980. View at Google Scholar · View at Scopus
  48. J. H. Rask and P. R. Buseck, “Topotactic relations among pyrolusite, manganite, and Mn5O8: a high-resolution transmission electron microscopy investigation,” American Mineralogist, vol. 71, no. 5-6, pp. 805–814, 1986. View at Google Scholar · View at Scopus
  49. C. B. Azzoni, M. C. Mozzati, P. Galinetto et al., “Thermal stability and structural transition of metastable Mn5O8: in situ micro-Raman study,” Solid State Communications, vol. 112, no. 7, pp. 375–378, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. E. G. Larson, R. J. Arnott, and D. G. Wickham, “Preparation, semiconduction and low-temperature magnetization of the system Ni1-xMn2+xO4,” Journal of Physics and Chemistry of Solids, vol. 23, no. 12, pp. 1771–1781, 1962. View at Google Scholar · View at Scopus
  51. A. M. M. Farea, S. Kumar, K. M. Batoo, A. Yousef, C. G. Lee, and Alimuddin, “Structure and electrical properties of Co0.5CdxFe2.5-xO4 ferrites,” Journal of Alloys and Compounds, vol. 464, no. 1-2, pp. 361–369, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Kumar, B. P. Singh, R. N. P. Choudhary, and A. K. Thakur, “Characterization of electrical properties of Pb-modified BaSnO3 using impedance spectroscopy,” Materials Chemistry and Physics, vol. 99, no. 1, pp. 150–159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. K. W. Wagner, “Electricity and magnetism,” Annals of Physics, vol. 40, p. 817, 1913. View at Google Scholar
  54. Y. Köseoǧlu, M. Bay, M. Tan et al., “Magnetic and dielectric properties of Mn0.2Ni0.8Fe2O4 nanoparticles synthesized by PEG-assisted hydrothermal method,” Journal of Nanoparticle Research, vol. 13, no. 5, pp. 2235–2244, 2011. View at Publisher · View at Google Scholar
  55. M. Pastor, S. Goenka, S. Maiti, K. Biswas, and I. Manna, “Phase evolution, dielectric and impedance spectroscopic study of SrNb2O6 columbite phase,” Ceramics International, vol. 36, no. 3, pp. 1041–1045, 2010. View at Publisher · View at Google Scholar
  56. T. Ramana, K. Akhilesh, B. Chandrahas, and T. P. Sinha, “Charge transport and dielectric response in ZnO nanotubes,” Current Applied Physics, vol. 10, p. 676, 2010. View at Google Scholar
  57. S. F. Mansour and M. A. Elkestawy, “A comparative study of electric properties of nano-structured and bulk Mn-Mg spinel ferrite,” Ceramics International, vol. 37, no. 4, pp. 1175–1180, 2011. View at Publisher · View at Google Scholar
  58. L. E. Cross, “The contribution of structural disorder to diffuse phase transitions in ferroelectrics,” Ferroelectrics, vol. 76, p. 241, 1987. View at Google Scholar
  59. R. Mani, S. N. Achary, K. R. Chakraborty et al., “Dielectric properties of some MM04 and MTiM0O6 (M01/4 Cr, Fe,Ga; M01/4 Nb, Ta,Sb) rutile-type oxides,” Journal of Solid State Chemistry, vol. 183, no. 6, pp. 1380–1387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. J. C. Maxwell, Electricity and Magnetism, Oxford University Press, New York, NY, USA, 1973.
  61. Z. Durmus, A. Baykal, H. Kavas, and H. Sozeri, “Preparation and characterization of polyaniline (PANI)-Mn3O4 nanocomposite,” Physica B, vol. 406, p. 1114, 2011. View at Google Scholar