Table of Contents
ISRN Communications and Networking
Volume 2012, Article ID 720286, 12 pages
Research Article

A Transmission Power Self-Optimization Technique for Wireless Sensor Networks

1Signals & Systems for Computing Group (SiSC), Catholic University of Rio Grande do Sul (PUCRS), 90619-900 Porto Alegre, RS, Brazil
2DCCE, Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, SP, Brazil
3PGEAS, Universidade Federal de Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
4Unidad Reguladora de Servicios de Comunicaciones (URSEC), Universidad ORT, 11300 Montevideo, Uruguay
5Instituto Nacional de Tecnologia Industrial (INTI), C1001AAF Buenos Aires, Argentina
6Pontificia Universidad Católica del Perú (PUCP), Lima 32, Peru

Received 7 November 2011; Accepted 19 December 2011

Academic Editor: F. Vasques

Copyright © 2012 F. Lavratti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Wireless sensor networks (WSNs) are generally used to monitor hazardous events in inaccessible areas. Thus, on one hand, it is preferable to assure the adoption of the minimum transmission power in order to extend as much as possible the WSNs lifetime. On the other hand, it is crucial to guarantee that the transmitted data is correctly received by the other nodes. Thus, trading off power optimization and reliability insurance has become one of the most important concerns when dealing with modern systems based on WSN. In this context, we present a transmission power self-optimization (TPSO) technique for WSNs. The TPSO technique consists of an algorithm able to guarantee the connectivity as well as an equally high quality of service (QoS), concentrating on the WSNs efficiency (Ef), while optimizing the transmission power necessary for data communication. Thus, the main idea behind the proposed approach is to trade off WSNs Ef against energy consumption in an environment with inherent noise. Experimental results with different types of noise and electromagnetic interference (EMI) have been explored in order to demonstrate the effectiveness of the TPSO technique.