Abstract

We introduce a new notion of random (𝐻(,),𝜙)-𝜂-accretive mappings and prove the Lipschitz continuity of the random resolvent operator associated with the random (𝐻(,),𝜙)-𝜂-accretive mappings. We introduce and study a new system of random generalized variational inclusions with random (𝐻(,),𝜙)-𝜂-accretive mappings and random fuzzy mappings in Banach spaces. By using the random resolvent operator, an iterative algorithm for solving such system of random generalized variational inclusions is constructed in Banach spaces. Under some suitable conditions, we prove the convergence of the iterative sequences generated by the algorithm.

1. Introduction

Variational inclusions and variational inequalities have wide applications to many fields including, for example, economics, optimization and control theory, operators research, transportation network modeling, and mathematical programming. For these reasons, various variational inclusions and variational inequalities have been intensively studied in recent years. For details, we refer the reader to [13] and references therein.

Recently, Wang and Ding [4], and Nazemi [5] introduced the cocepts of (𝐻(,),𝜂)-accretive mappings, and (𝐻,𝜙)-𝜂-accretive mappings, respectively, which generalize the notion of 𝐻-accretive mappings, (𝐻,𝜂)-accretive mappings, 𝐻(,)-accretive mappings, (𝐴,𝜂)-accretive mappings and other existing accretive mappings as special cases. They also defined the resolvent operators associated with this mappings, and shown their Lipschitz continuity.

On the other hand, it is well known that the study of the random equations involving the random operators in view of their need for dealing with probabilistic models in applied sciences is very important. In 1989, Chang and Zhu [6] and Chang [7] first introduced the concepts of variational inequalities for fuzzy mappings. Since then several classes of variational inequalities for fuzzy mappings were considered by Chang and Huang [8], Noor [9, 10], Noor and Al-Said [11], Ding [12], Ding and Park [13], and Park and Jeong [14, 15] in the setting of Hilbert spaces. Recently, the random variational inequalities and random variational inclusion problems have been introduced and studied by Dai [16], Cho and Lan [17], Lan [18], Ahmad and Bazán [19], Chang and Huang [20, 21], Zang and Zhu [22], Huang [23, 24], Husain et al. [25], etc.

Motivated and inspired by the recent research works in this fascinating area, in this paper, we introduce a new class of random (𝐻(,),𝜙)-𝜂-accretive mappings and study a new system of random generalized variational inclusions with random (𝐻(,),𝜙)-𝜂-accretive mappings and random fuzzy mappings in Banach spaces. An iterative algorithm is defined to compute the approximate solutions of system of random generalized variational inclusions. The convergence of iterative sequences generated by the algorithm is also shown. Our results improve and generalize many known corresponding results.

2. Preliminaries

Let 𝐸 be a real Banach space with dual space 𝐸 and , the dual pair between 𝐸 and 𝐸. Let 𝐹(𝐸) be a collection of all fuzzy sets over 𝐸. A mapping 𝐹 from 𝐸 into 𝐹(𝐸) is called a fuzzy mapping on 𝐸. If 𝐹 is a fuzzy mapping on 𝐸, then 𝐹(𝑥) (denote it by 𝐹𝑥 in the sequel) is a fuzzy set on 𝐸 and 𝐹𝑥(𝑦) is the membership function of 𝑦 in 𝐹𝑥. Let 𝑁𝐹(𝐸), 𝑞[0,1], then the set (𝑁)𝑞={𝑥𝐸𝑁(𝑥)𝑞}(2.1) is called a 𝑞-cut set of 𝑁.

Let (Ω,Σ) be a measurable space, where Ω is a set and Σ is a 𝜎-algebra of subsets of Ω. Let 𝛽(𝐸), 2𝐸, CB(𝐸), and 𝐻(,) be the class of Borel 𝜎-fields in 𝐸, the family of all nonempty subsets of 𝐸, the family of all nonempty, closed and bounded subsets of 𝐸, and the Hausdorff metric on CB(𝐸), respectively. Recall that the generalized duality mapping 𝐽𝑞𝐸2𝐸 is defined by𝐽𝑞(𝑥)=𝑓𝐸𝑥,𝑓=𝑥𝑞,𝑥𝑞1=𝑓,𝑥𝐸,(2.2) where 𝑞>1 is a constant. In particular, 𝐽2 is the usual normalized duality mapping. It is known that, in general, 𝐽𝑞(𝑥)=𝑥𝑞1𝐽2(𝑥) for all 𝑥0, and 𝐽𝑞 is single-valued if 𝐸 is strictly convex. In the sequel, unless otherwise specified, we always suppose that 𝐸 is a real Banach space such that 𝐽𝑞 is single-valued. If 𝐸= is a Hilbert space, then 𝐽2 becomes the identity mapping on 𝐻.

The modulus of smoothness of 𝐸 is the function 𝜌𝐸[0,)[0,) defined by𝜌𝐸1(𝑡)=sup2.(𝑥+𝑦+𝑥𝑦)1𝑥1,𝑦𝑡(2.3) A Banach space 𝐸 is called uniformly smooth iflim𝑡0𝜌𝐸(𝑡)𝑡=0.(2.4)𝐸 is called 𝑞-uniformly smooth if there exists a constant 𝑐>0 such that𝜌𝐸(𝑡)𝑐𝑡𝑞,𝑞>1.(2.5) Note that 𝐽𝑞 is single-valued if 𝐸 is uniformly smooth. In the following, we give an important inequality due to Xu [26] in 𝑞-uniformly smooth Banach spaces, which will play a crucial role in constructing the iterative algorithm to approximate the solution of system of variational inclusions.

Lemma 2.1 (see [26]). Let 𝐸 be a real uniformly smooth Banach space. Then 𝐸 is 𝑞-uniformly smooth if and only if there exists a constant 𝑐𝑞>0 such that 𝑥+𝑦𝑞𝑥𝑞+𝑞𝑦,𝐽𝑞(𝑥)+𝑐𝑞𝑦𝑞.(2.6)

Definition 2.2. A mapping 𝑥Ω𝐸 is said to be measurable if for any 𝐵𝛽(𝐸), {𝑡Ω𝑥(𝑡)𝐵}Σ.

Definition 2.3. A mapping 𝑓Ω×𝐸𝐸 is called a random single-valued mapping if for any 𝑥𝐸, 𝑓(𝑡,𝑥)=𝑦(𝑡) is measurable. A random mapping 𝑓 is said to be continuous if for any 𝑡Ω, the mapping 𝑓(𝑡,)𝐸𝐸 is continuous. Similarly, we can define a random mapping 𝑏Ω×𝐸×𝐸𝐸. We will write 𝑓𝑡(𝑥)=𝑓(𝑡,𝑥(𝑡)) and 𝑏𝑡(𝑥,𝑦)=𝑏(𝑡,𝑥(𝑡),𝑦(𝑡)) for all 𝑡Ω and 𝑥(𝑡),𝑦(𝑡)𝐸.
It is well known that a measurable mapping is necessarily a random mapping.

Definition 2.4. A multivalued mapping 𝐺Ω2𝐸 is said to be measurable if for any 𝐵𝛽(𝐸), 𝐺1(𝐵)={𝑡Ω𝐺(𝑡)𝐵}Σ.

Definition 2.5. A mapping 𝑢Ω𝐸 is called a measurable section of a multivalued mapping ΓΩ2𝐸 if 𝑢 is measurable and for any 𝑡Ω, 𝑢(𝑡)Γ(𝑡).

Definition 2.6. A mapping 𝑇Ω×𝐸2𝐸 is called a random multivalued mapping if for any 𝑥𝐸, 𝑇(,𝑥) is measurable. A random multivalued mapping 𝑇Ω×𝐸CB(𝐸) is said to be 𝐻-continuous if for any 𝑡Ω, 𝑇(𝑡,) is continuous in 𝐻(,), where 𝐻(,) is the Hausdorff metric on CB(𝐸) defined as follows: for any given 𝐴,𝐵CB(𝐸), 𝐻(𝐴,𝐵)=maxsup𝑥𝐴inf𝑦𝐵𝑥𝑦,sup𝑦𝐵inf𝑥𝐴.𝑥𝑦(2.7)

Definition 2.7. A fuzzy mapping 𝐹Ω𝐹(𝐸) is called measurable if for any 𝛼(0,1], (𝐹())𝛼Ω2𝐸 is a measurable multivalued mapping.

Definition 2.8. A fuzzy mapping 𝐹Ω×𝐸𝐹(𝐸) is called a random fuzzy mapping if for any 𝑥𝐸, 𝐹(,𝑥)Ω𝐹(𝐸) is a measurable fuzzy mapping.

Lemma 2.9 (see [27]). Let 𝑇Ω×𝐸CB(𝐸) be a 𝐻-continuous random multivalued mapping. Then for any measurable mapping 𝑤Ω𝐸 the multivalued mapping 𝑇(,𝑤())ΩCB(𝐸) is measurable.

Lemma 2.10 (see [27]). Let 𝑆,𝑇ΩCB(𝐸) be two measurable multivalued mappings, 𝜖>0 a constant, and 𝑣Ω𝐸 a measurable selection of 𝑆. Then there exists a measurable selection 𝑤Ω𝐸 of T such that for all 𝑡Ω, 𝐻𝑣(𝑡)𝑤(𝑡)(1+𝜖)(𝑆(𝑡),𝑇(𝑡)).(2.8)

Definition 2.11. A random mapping 𝑃Ω×𝐸𝐸 is said to be(i)accretive if𝑃𝑡𝑥1𝑃𝑡𝑥2,𝐽𝑞𝑥1(𝑡)𝑥2(𝑡)0,𝑥1(𝑡),𝑥2(𝑡)𝐸,𝑡Ω;(2.9)(ii)𝑟-strongly accretive if there exists a measurable function 𝑟Ω(0,) such that𝑃𝑡𝑥1𝑃𝑡𝑥2,𝐽𝑞𝑥1(𝑡)𝑥2𝑥(𝑡)𝑟(𝑡)1(𝑡)𝑥2(𝑡)𝑞,𝑥1(𝑡),𝑥2(𝑡)𝐸,𝑡Ω;(2.10)(iii)𝑚-relaxed accretive if there exists a measurable function 𝑚Ω(0,) such that𝑃𝑡𝑥1𝑃𝑡𝑥2,𝐽𝑞𝑥1(𝑡)𝑥2𝑥(𝑡)𝑚(𝑡)1(𝑡)𝑥2(𝑡)𝑞,𝑥1(𝑡),𝑥2(𝑡)𝐸,𝑡Ω;(2.11)(iv)(𝛼,𝜉)-relaxed cocoercive if there exist measurable functions 𝛼Ω(0,), 𝜉Ω(0,) such that𝑃𝑡𝑥1𝑃𝑡𝑥2,𝐽𝑞𝑥1(𝑡)𝑥2𝑃(𝑡)𝛼(𝑡)𝑡𝑥1𝑃𝑡𝑥2𝑞𝑥+𝜉(𝑡)1(𝑡)𝑥2(𝑡)𝑞,𝑥1(𝑡),𝑥2(𝑡)𝐸,𝑡Ω;(2.12)(v)𝜆-Lipschitz continuous if there exists a measurable function 𝜆Ω(0,) such that𝑝𝑡𝑥1𝑝𝑡𝑥2𝜆(𝑡)𝑥1(𝑡)𝑥2(𝑡),𝑥1(𝑡),𝑥2(𝑡)𝐸,𝑡Ω.(2.13)

Definition 2.12. A random multivalued mapping 𝑀Ω×𝐸2𝐸 is said to be(i)accretive if𝑢(𝑡)𝑣(𝑡),𝐽𝑞𝑥1(𝑡)𝑥2(𝑡)0,𝑢(𝑡)𝑀𝑡𝑥1,𝑣(𝑡)𝑀𝑡𝑥2,𝑥1(𝑡),𝑥2(𝑡)𝐸,𝑡Ω;(2.14)(ii)𝑚-accretive if 𝑀 is accretive and (𝐼𝑡+𝜌(𝑡)𝑀𝑡)(𝐸)=𝐸 holds for all 𝑡Ω and 𝜌(𝑡)>0.

Remark 2.13. If 𝐸= is a Hilbert space, then we can obtain corresponding definitions of monotonicity, strongly monotonicity, relaxed monotonicity, and maximal monotonicity from Definitions 2.11 and 2.12.

Definition 2.14. A random mapping 𝜂Ω×𝐸×𝐸𝐸 is said to be 𝜏-Lipschitz continuous if there exists a measurable function 𝜏Ω(0,) such that 𝜂𝑡𝑥1,𝑥2𝜏(𝑡)𝑥1(𝑡)𝑥2(𝑡),𝑥1(𝑡),𝑥2(𝑡)𝐸,𝑡Ω.(2.15)

Definition 2.15. Let 𝐻,𝐴Ω×𝐸𝐸 and 𝜂Ω×𝐸×𝐸𝐸 be random single-valued mappings. Then a random multivalued mapping 𝑇Ω×𝐸2𝐸 is said to be(i)𝜂-accretive if𝑢(𝑡)𝑣(𝑡),𝐽𝑞𝜂𝑡𝑥1,𝑥20,𝑢(𝑡)𝑇𝑡𝑥1,𝑣(𝑡)𝑇𝑡𝑥2,𝑥1(𝑡),𝑥2(𝑡)𝐸,𝑡Ω;(2.16)(ii)strictly 𝜂-accretive if𝑢(𝑡)𝑣(𝑡),𝐽𝑞𝜂𝑡𝑥1,𝑥20,𝑢(𝑡)𝑇𝑡𝑥1,𝑣(𝑡)𝑇𝑡𝑥2,𝑥1(𝑡),𝑥2(𝑡)𝐸,𝑡Ω,(2.17) and equality holds if and only if 𝑥1(𝑡)=𝑥2(𝑡);(iii)𝛾-strongly 𝜂-accretive if there exists a measurable function 𝛾Ω(0,) such that𝑢(𝑡)𝑣(𝑡),𝐽𝑞𝜂𝑡𝑥1,𝑥2𝑥𝛾(𝑡)1(𝑡)𝑥2(𝑡)𝑞,𝑢(𝑡)𝑇𝑡𝑥1,𝑣(𝑡)𝑇𝑡𝑥2,𝑥1(𝑡),𝑥2(𝑡)𝐸,𝑡Ω;(2.18)(iv)𝑚-relaxed 𝜂-accretive if there exists a measurable function 𝑚Ω(0,) such that𝑢(𝑡)𝑣(𝑡),𝐽𝑞𝜂𝑡𝑥1,𝑥2𝑥𝑚(𝑡)1(𝑡)𝑥2(𝑡)𝑞,𝑢(𝑡)𝑇𝑡𝑥1,𝑣(𝑡)𝑇𝑡𝑥2,𝑥1(𝑡),𝑥2(𝑡)𝐸,𝑡Ω;(2.19)(v)𝜂-𝑚-accretive if 𝑇 is 𝜂-accretive and (𝐼𝑡+𝜌(𝑡)𝑇𝑡)(𝐸)=𝐸 holds for all 𝑡Ω and 𝜌(𝑡)>0;(vi)𝐻-accretive if 𝑇 is accretive and (𝐻𝑡+𝜌(𝑡)𝑇𝑡)(𝐸)=𝐸 holds for all 𝑡Ω and 𝜌(𝑡)>0;(vii)(𝐻,𝜂)-accretive if 𝑇 is 𝜂-accretive and (𝐻𝑡+𝜌(𝑡)𝑇𝑡)(𝐸)=𝐸 holds for all 𝑡Ω and 𝜌(𝑡)>0;(viii)(𝐴,𝜂)-accretive if 𝑇 is 𝑚-relaxed 𝜂-accretive and (𝐴𝑡+𝜌(𝑡)𝑇𝑡)(𝐸)=𝐸 holds for all 𝑡Ω and 𝜌(𝑡)>0.

Definition 2.16. Let 𝐻𝐸×𝐸𝐸 be a single-valued mapping and 𝜂Ω×𝐸×𝐸𝐸 and 𝐴,𝐵Ω×𝐸𝐸 random single-valued mappings. Then(i)𝐻(𝐴,) is said to be 𝛼-strongly 𝜂-accretive with respect to 𝐴 if there exists a measurable function 𝛼Ω(0,) such that 𝐻𝐴𝑡𝑥1𝐴,𝑢(𝑡)𝐻𝑡𝑥2,𝑢(𝑡),𝐽𝑞𝜂𝑡𝑥1,𝑥2𝑥𝛼(𝑡)1(𝑡)𝑥2(𝑡)𝑞,𝑥1(𝑡),𝑥2(𝑡),𝑢(𝑡)𝐸,𝑡Ω;(2.20)(ii)𝐻(,𝐵) is said to be 𝛽-relaxed 𝜂-accretive with respect to 𝐵 if there exists a measurable function 𝛽Ω(0,) such that 𝐻𝑢(𝑡),𝐵𝑡𝑥1𝑢𝐻(𝑡),𝐵𝑡𝑥2,𝐽𝑞𝜂𝑡𝑥1,𝑥2𝑥𝛽(𝑡)1(𝑡)𝑥2(𝑡)𝑞,𝑥1(𝑡),𝑥2(𝑡),𝑢(𝑡)𝐸,𝑡Ω;(2.21)(iii)𝐻 is said to be 𝜆-Lipschitz continuous with respect to 𝐴 in the first argument if there exists a measurable function 𝜆Ω(0,) such that 𝐴𝐻𝑡𝑥1𝐴,𝑢(𝑡)𝐻𝑡𝑥2,𝑢(𝑡)𝜆(𝑡)𝑥1(𝑡)𝑥2(𝑡),𝑥1(𝑡),𝑥2(𝑡),𝑢(𝑡)𝐸,𝑡Ω.(2.22)

Example 2.17. Let be a Hilbert space and 𝑆Ω× a 𝑠-Lipschitz continuous and accretive mapping, 𝜂𝑡(𝑥,𝑦)=𝑥(𝑡)𝑦(𝑡), 𝐻(𝑥(𝑡),𝑦(𝑡))=𝑥(𝑡)+𝑦(𝑡), 𝐴𝑡(𝑥)=(1+𝑐𝑘/16)𝑥(𝑡), and 𝐵𝑡(𝑥)=𝑐𝑘𝑆𝑡(𝑥)(𝑐𝑘/8)𝑥(𝑡), for all (𝑥(𝑡),𝑦(𝑡))×, 𝑡Ω and 𝑐𝑘>0. Then 𝐻(𝐴,) is (1+𝑐𝑘/16)-strongly 𝜂-accretive with respect to 𝐴 and 𝐻(,𝐵) is 𝑐𝑘(𝑠+1/8)-relaxed 𝜂-accretive with respect to 𝐵.

Definition 2.18. Let 𝐸1,𝐸2,,𝐸𝑘 be real Banach spaces and for each 𝑖=1,2,,𝑘, let 𝑁𝑖Ω×𝑘𝑗=1𝐸𝑗𝐸𝑖 be a random single-valued mapping. Then 𝑁𝑖 is said to be 𝜉𝑖𝑗-Lipschitz continuous in the (𝑗+1)th argument if there exists a measurable function 𝜉𝑖𝑗Ω(0,) such that 𝑁𝑖𝑡𝑥1,,𝑥𝑗1,𝑦𝑗1,𝑥𝑗+1,,𝑥𝑘𝑁𝑖𝑡𝑥1,,𝑥𝑗1,𝑦𝑗2,𝑥𝑗+1,,𝑥𝑘𝜉𝑖𝑗(𝑡)𝑦𝑗1(𝑡)𝑦𝑗2(𝑡),𝑦𝑗1(𝑡),𝑦𝑗2(𝑡)𝐸𝑗,𝑥𝑖(𝑡)𝐸𝑖,𝑡Ω(𝑖,𝑗{1,2,,𝑘},𝑖𝑗).(2.23)

Definition 2.19. Let be a Hilbert space, 𝐻× a single-valued mapping, and 𝐴,𝐵Ω× random single-valued mappings. 𝐻 is said to be coercive with respect to 𝐴 and 𝐵 if lim𝑥(𝑡)𝐻𝐴𝑡(𝑥),𝐵𝑡(𝑥),𝑥(𝑡)𝑥(𝑡)=+.(2.24)

Definition 2.20. Let be a Hilbert space, 𝐻× a single-valued mapping and 𝐴,𝐵Ω× random single-valued mappings. 𝐻 is said to be bounded with respect to 𝐴 and 𝐵 if 𝐻(𝐴𝑡(𝑃),𝐵𝑡(𝑃)) is bounded for every bounded subset 𝑃 of and 𝑡Ω. 𝐻 is said to be hemicontinuous with respect to 𝐴 and 𝐵 if for any fixed 𝑥(𝑡),𝑦(𝑡),𝑧(𝑡), the function 𝑘𝐻(𝐴𝑡(𝑥+𝑘𝑦),𝐵𝑡(𝑥+𝑘𝑦)),𝑧(𝑡) is continuous at 0+.

3. Random (𝐻(,),𝜙)-𝜂-Accretive Mappings

In this section, we will introduce a new class of random accretive mappings-(𝐻(,),𝜙)-𝜂-accretive mappings and discuss some properties of random (𝐻(,),𝜙)-𝜂-accretive mappings.

Definition 3.1. Let 𝐻𝐸×𝐸𝐸 be a single-valued mapping and 𝜂Ω×𝐸×𝐸𝐸 and 𝜙,𝐴,𝐵Ω×𝐸𝐸 random single-valued mappings. Then the random multivalued mapping 𝑀Ω×𝐸2𝐸 is said to be (𝐻(,),𝜙)-𝜂-accretive with respect to 𝐴 and 𝐵 if 𝜙𝑀 is 𝑚-relaxed 𝜂-accretive and 𝐻𝐴𝑡,𝐵𝑡+𝜙𝑡𝑀𝑡(𝐸)=𝐸,𝑡Ω.(3.1)

Remark 3.2. (i) If 𝐻(𝐴𝑡,𝐵𝑡)=𝐻𝑡 and 𝜙𝑀 is 𝜂-accretive, then the random (𝐻(,),𝜙)-𝜂-accretive mapping reduces to the random (𝐻,𝜙)-𝜂-accretive mapping.
(ii) If 𝜙𝑡(𝑥)=𝜆(𝑡)𝑥(𝑡), for all 𝑥(𝑡)𝐸, 𝜆(𝑡)>0, then the random (𝐻(,),𝜙)-𝜂-accretive mapping reduces to the random (𝐻(,),𝜂)-accretive mapping.

Remark 3.3. (i) If 𝑀 is 𝜂-accretive, 𝐻(𝐴𝑡,𝐵𝑡)=𝐻𝑡, and 𝜙𝑡(𝑥)=𝜆(𝑡)𝑥(𝑡), for all 𝑥(𝑡)𝐸, 𝜆(𝑡)>0, then the random (𝐻(,),𝜙)-𝜂-accretive mapping reduces to the random (𝐻,𝜂)-accretive mapping studied by Uea and Kumam [28].
(ii) If 𝑀 is 𝑚-relaxed 𝜂-accretive, 𝐻(𝐴𝑡,𝐵𝑡)=𝐻𝑡, and 𝜙𝑡(𝑥)=𝜆(𝑡)𝑥(𝑡), for all 𝑥(𝑡)𝐸, 𝜆(𝑡)>0, then the random (𝐻(,),𝜙)-𝜂-accretive mapping reduces to the random (𝐴,𝜂)-accretive mapping studied by Cho and Lan [17].
(iii) If 𝑀 is 𝜂-accretive, 𝜂𝑡(𝑥,𝑦)=𝑥(𝑡)𝑦(𝑡), 𝜙𝑡(𝑥)=𝜆(𝑡)𝑥(𝑡), for all 𝑥(𝑡),𝑦(𝑡)𝐸, 𝜆(𝑡)>0, then the random (𝐻(,),𝜙)-𝜂-accretive mapping reduces to the random 𝐻(,)-accretive mapping studied by Zhang [29].

Example 3.4. Let be a Hilbert space, 𝜆Ω(0,) a measurable function; for every (𝑥(𝑡),𝑦(𝑡))×, 𝜂𝑡(𝑥,𝑦)=𝑥(𝑡)𝑦(𝑡), 𝜙𝑡(𝑥)=𝜆(𝑡)𝑥(𝑡); 𝑀Ω×2𝐻 a random maximal monotone mapping, 𝐻× a bounded, coercive, and hemicontinuous mapping, with respect to 𝐴 and 𝐵, and 𝛼-strongly 𝜂-accretive with respect to 𝐴 in the first argument and 𝛽-relaxed 𝜂-accretive with respect to 𝐵 in second argument. Then 𝑀 is a random (𝐻(,),𝜙)-𝜂-accretive mapping with respect to 𝐴 and 𝐵.

Proof. For every 𝑡Ω, 𝜆(𝑡)𝑀 is maximal monotone since 𝑀 is maximal monotone. Since 𝐻 is bounded, coercive, and hemicontinuous with respect to 𝐴 and 𝐵,𝛼-strongly 𝜂-accretive with respect to 𝐴 in the first argument and 𝛽-relaxed 𝜂-accretive with respect to 𝐵 in the second argument, it follows from Corollary 32.26 of [30] that (𝐻(𝐴𝑡,𝐵𝑡)+𝜙𝑡𝑀𝑡)()= holds for every 𝑡Ω. Thus 𝑀 is a random (𝐻(,),𝜙)-𝜂-accretive mapping with respect to 𝐴 and 𝐵.

Example 3.5. Let ==(,+), 𝑀𝑡(𝑥)=1/(1+𝑥(𝑡)2), 𝐴𝑡(𝑥)=2𝑥(𝑡), 𝐵𝑡(𝑦)=𝑦(𝑡), 𝐻(𝐴𝑡(𝑥),𝐵𝑡(𝑦))=𝐴𝑡(𝑥)+𝐵𝑡(𝑦), 𝜂𝑡(𝑥,𝑦)=arctan(𝑥(𝑡))arctan(𝑦(𝑡)), and 𝜙𝑡𝑀𝑡(𝑥)=𝑥(𝑡)𝑀𝑡(𝑠)𝑑𝑠, for all 𝑥(𝑡),𝑦(𝑡). Then 𝜙𝑡𝑀𝑡(𝑥)𝜙𝑡𝑀𝑡(𝑦),𝜂𝑡=𝜋(𝑥,𝑦)arctan(𝑥(𝑡))+2𝜋arctan(𝑦(𝑡))+2,arctan(𝑥(𝑡))arctan(𝑦(𝑡))=(arctan(𝑥(𝑡))arctan(𝑦(𝑡)))2𝐻𝐴0,𝑡,𝐵𝑡+𝜙𝑡𝑀𝑡𝜋(𝑥)=𝑥(𝑡)+arctan(𝑥(𝑡))+2.(3.2) This implies that (𝐻(𝐴𝑡,𝐵𝑡)+𝜙𝑡𝑀𝑡) is surjective. Thus 𝑀 is a random (𝐻(,),𝜙)-𝜂-accretive mapping with respect to 𝐴 and 𝐵.

Definition 3.6. Let 𝜂Ω×𝐸×𝐸𝐸, 𝜙Ω×𝐸𝐸 be random single-valued mappings, 𝐻(𝐴,𝐵) be 𝛼-strongly 𝜂-accretive with respect to 𝐴 and 𝛽-relaxed 𝜂-accretive with respect to 𝐵 and 𝑀Ω×𝐸2𝐸 be a random (𝐻(,),𝜙)-𝜂-accretive mapping with respect to 𝐴 and 𝐵. Then the general resolvent operator 𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡Ω×𝐸2𝐸 is defined by 𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡𝐻𝐴(𝑢)=𝑡,𝐵𝑡+𝜙𝑡𝑀𝑡1(𝑢),𝑢(𝑡)𝐸,𝑡Ω.(3.3)

Remark 3.7. (i) If 𝑀 is 𝜂-accretive, 𝐻(𝐴𝑡,𝐵𝑡)=𝐻𝑡, and 𝜙𝑡(𝑥)=𝜆(𝑡)𝑥(𝑡), for all 𝑥(𝑡)𝐸, 𝜆(𝑡)>0, then the resolvent operator 𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡 reduces to the resolvent operator 𝐽𝜆(𝑡),𝑀𝑡𝐻𝑡 introduced by Uea and Kumam [28].
(ii) If 𝑀 is 𝑚-relaxed 𝜂-accretive, 𝐻(𝐴𝑡,𝐵𝑡)=𝐻𝑡 and 𝜙𝑡(𝑥)=𝜆(𝑡)𝑥(𝑡), for all 𝑥(𝑡)𝐸, 𝜆(𝑡)>0, then the resolvent operator 𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡 reduces to the resolvent operator 𝑅𝜆(𝑡),𝐴𝑡𝜂𝑡,𝑀𝑡 introduced by Cho and Lan [17].
(iii) If 𝑀 is 𝜂-accretive, 𝜂𝑡(𝑥,𝑦)=𝑥(𝑡)𝑦(𝑡), 𝜙𝑡(𝑥)=𝜆(𝑡)𝑥(𝑡), for all 𝑥(𝑡),𝑦(𝑡)𝐸, 𝜆(𝑡)>0, then the resolvent operator 𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡 reduces to the resolvent operator 𝑅𝐻(,)𝑀,𝜆 introduced by Zhang [29].

Theorem 3.8. Let 𝜙Ω×𝐸𝐸 be a random single-valued mapping, 𝜂Ω×𝐸×𝐸𝐸 be 𝜏-Lipschitz continuous and 𝐻(𝐴,𝐵) be 𝛼-strongly 𝜂-accretive with respect to 𝐴 and 𝛽-relaxed 𝜂-accretive with respect to 𝐵 and 𝛼(𝑡)𝛽(𝑡), 𝑡Ω. Let 𝑀Ω×𝐸2𝐸 be a random (𝐻(,),𝜙)-𝜂-accretive mapping with respect to 𝐴 and 𝐵. Then the resolvent operator 𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡 is 𝜏(𝑡)𝑞1/(𝑟(𝑡)𝑚(𝑡))-Lipschitz continuous for 𝑟(𝑡)>𝑚(𝑡), where 𝑟(𝑡)=𝛼(𝑡)𝛽(𝑡), 𝑡Ω, that is, 𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢)𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑣)𝜏(𝑡)𝑞1𝑟(𝑡)𝑚(𝑡)𝑢(𝑡)𝑣(𝑡),𝑢(𝑡),𝑣(𝑡)𝐸,𝑡Ω.(3.4)

Proof. Let 𝑢(𝑡),𝑣(𝑡)𝐸 be any given points; it follows from Definition 3.6 that 𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡𝐻𝐴(𝑢)=𝑡,𝐵𝑡+𝜙𝑡𝑀𝑡1𝑅(𝑢),𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡𝐻𝐴(𝑣)=𝑡,𝐵𝑡+𝜙𝑡𝑀𝑡1(𝑣).(3.5) This implies that 𝐴𝑢(𝑡)𝐻𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢),𝐵𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢)𝜙𝑡𝑀𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡,𝐴(𝑢)𝑣(𝑡)𝐻𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑣),𝐵𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑣)𝜙𝑡𝑀𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡.(𝑣)(3.6) Since 𝜙𝑀 is 𝑚-relaxed 𝜂-accretive, we get 𝑅𝑚(𝑡)𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢)𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑣)𝑞𝑢𝐴(𝑡)𝐻𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢),𝐵𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡𝐴(𝑢)𝑣(𝑡)𝐻𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑣),𝐵𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑣),𝐽𝑞𝜂𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢),𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(=𝑢𝐻𝐴𝑣)(𝑡)𝑣(𝑡)𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢),𝐵𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡𝐴(𝑢)𝐻𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑣),𝐵𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑣),𝐽𝑞𝜂𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢),𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡.(𝑣)(3.7) From (3.7) and Lipschitz continuity of 𝜂, we have 𝜏(𝑡)𝑞1𝑅𝑢(𝑡)𝑣(𝑡)𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢)𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑣)𝑞1𝜂𝑢(𝑡)𝑣(𝑡)𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢),𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑣)𝑞1𝑢(𝑡)𝑣(𝑡),𝐽𝑞𝜂𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢),𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡𝐻𝐴(𝑣)𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢),𝐵𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡𝐴(𝑢)𝐻𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑣),𝐵𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡,𝐽(𝑣)𝑞𝜂𝑡𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢),𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑅𝑣)𝑚(𝑡)𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢)𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑣)𝑞𝑅(𝛼(𝑡)𝛽(𝑡)𝑚(𝑡))𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢)𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑣)𝑞𝑅=(𝑟(𝑡)𝑚(𝑡))𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢)𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑣)𝑞.(3.8) Hence 𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑢)𝑅𝐻(,),𝜂𝑡𝑀𝑡,𝜙𝑡(𝑣)𝜏(𝑡)𝑞1𝑟(𝑡)𝑚(𝑡)𝑢(𝑡)𝑣(𝑡),𝑢(𝑡),𝑣(𝑡)𝐸,𝑡Ω.(3.9) This completes the proof.

4. A New System of Random Generalized Variational Inclusions

In this section, we will introduce a new system of random generalized variational inclusions with random (𝐻(,),𝜙)-𝜂-accretive mappings and construct an iterative algorithm for solving this system of random generalized variational inclusions.

Let for 𝑖,𝑗=1,2,,𝑘, 𝑇𝑗𝑖Ω×𝐸𝑗𝖥(𝐸𝑖), and 𝑆𝑖Ω×𝐸𝑖𝖥(𝐸𝑖) be random fuzzy mappings satisfying the following condition (C).(C)For 𝑖,𝑗=1,2,,𝑘, there exist mappings 𝑎𝑗𝐸𝑗[0,1], 𝑏𝑖𝐸𝑖[0,1], such that𝑇𝑗𝑖𝑗𝑡,𝑦𝑎𝑗(𝑦𝑗)CB𝐸𝑖,𝑡,𝑦𝑗Ω×𝐸𝑗𝑆(𝑖,𝑗=1,2,,𝑘),𝑖𝑖𝑡,𝑧𝑏𝑖(𝑧𝑖)CB𝐸𝑖,𝑡,𝑧𝑖Ω×𝐸𝑖(𝑖=1,2,,𝑘).(4.1)

By using the random fuzzy mappings 𝑇𝑗𝑖, 𝑆𝑖(𝑖,𝑗=1,2,,𝑘), we can define random multivalued mappings 𝑇𝑗𝑖, 𝑆𝑖 as follows.𝑇𝑗𝑖Ω×𝐸𝑗CB𝐸𝑖,𝑦𝑗𝑇𝑗𝑖𝑗𝑡,𝑦𝑎𝑗(𝑦𝑗)𝑆(𝑖,𝑗=1,2,,𝑘),𝑖Ω×𝐸𝑖CB𝐸𝑖,𝑧𝑖𝑆𝑖𝑖𝑡,𝑧𝑏𝑖(𝑧𝑖)(𝑖=1,2,,𝑘),(4.2) where (𝑆𝑖𝑖𝑡,𝑧)𝑏𝑖(𝑧𝑖)=𝑆𝑖(𝑡,𝑧𝑖(𝑡)).

In the sequel, for 𝑖,𝑗=1,2,,𝑘, 𝑇𝑗𝑖 and 𝑆𝑖 are called the random multivalued mappings induced by the random fuzzy mappings 𝑇𝑗𝑖 and 𝑆𝑖, respectively.

For 𝑖=1,2,,𝑘, given mappings 𝑎𝑖𝐸𝑖[0,1], 𝑏𝑖𝐸𝑖[0,1], let 𝑇1𝑖Ω×𝐸1𝖥(𝐸𝑖), 𝑇2𝑖Ω×𝐸2𝖥(𝐸𝑖),,𝑇𝑘𝑖Ω×𝐸𝑘𝖥(𝐸𝑖), 𝑆𝑖Ω×𝐸𝑖𝖥(𝐸𝑖) be random fuzzy mappings, 𝐻𝑖𝐸𝑖×𝐸𝑖𝐸𝑖 be a single-valued mapping and 𝜙𝑖,𝐴𝑖,𝐵𝑖,𝑓𝑖,𝑝𝑖Ω×𝐸𝑖𝐸𝑖, 𝜂𝑖Ω×𝐸𝑖×𝐸𝑖𝐸𝑖, 𝐹𝑖,𝑁𝑖Ω×𝑘𝑗=1𝐸𝑗𝐸𝑖 be random single-valued mappings and 𝑀𝑖Ω×𝐸𝑖×𝐸𝑖2𝐸𝑖 be a random (𝐻𝑖(,),𝜙𝑖)-𝜂𝑖-accretive mapping with respect to 𝐴𝑖 and 𝐵𝑖 in the second argument with Im𝑓𝑖dom𝑀𝑖𝑡(,𝑤𝑖), for each 𝑤𝑖(𝑡)𝐸𝑖 and 𝑡Ω. Now we consider the following system of random generalized variational inclusions:

For 𝑖=1,2,,𝑛, find measurable mappings 𝑥𝑖,𝑢1𝑖,𝑢2𝑖,,𝑢𝑘𝑖,𝑣𝑖Ω𝐸𝑖 such that for all 𝑡Ω and for each 𝑖=1,2,,𝑘,𝑥𝑖(𝑡)𝐸𝑖, 𝑇1𝑖1𝑡,𝑥(𝑡)(𝑢1𝑖(𝑡))𝑎1(𝑥1(𝑡)), 𝑇2𝑖2𝑡,𝑥(𝑡)(𝑢2𝑖(𝑡))𝑎2(𝑥2(𝑡)), …, 𝑇𝑘𝑖𝑘𝑡,𝑥(𝑡)(𝑢𝑘𝑖(𝑡))𝑎𝑘(𝑥𝑘(𝑡)), 𝑆𝑖𝑖𝑡,𝑥(𝑡)(𝑣𝑖(𝑡))𝑏𝑖(𝑥𝑖(𝑡)) such that0𝐹𝑖𝑡𝑥1𝑝1𝑡𝑥1,𝑥2𝑝2𝑡𝑥2,,𝑥𝑘𝑝𝑘𝑡𝑥𝑘+𝑁𝑖𝑡𝑢𝑖1,𝑢𝑖2,,𝑢𝑖𝑘+𝑀𝑖𝑡𝑓𝑖𝑡𝑥𝑖,𝑣𝑖.(4.3)

If for 𝑖=1,2,,𝑘, 𝐸𝑖=𝑖 is a Hilbert space and 𝑀𝑖𝑡(,𝑣𝑖)=𝜕𝜑𝑖𝑡(), for all 𝑡Ω, 𝑥𝑖(𝑡)𝑖 and 𝑣𝑖𝑆(𝑡)𝑖𝑡(𝑥𝑖), where 𝜕𝜑𝑖 denote the subdifferential of a proper, convex, and lower semicontinuous function 𝜑𝑖Ω×𝑖𝑅{+}, then system of random generalized variational inclusions (4.3) reduces to the following system of random generalized mixed variational inequalities.

For 𝑖=1,2,,𝑘, find measurable mappings 𝑥𝑖,𝑢1𝑖,𝑢2𝑖,,𝑢𝑘𝑖Ω𝑖 such that for all 𝑡Ω and for each 𝑖=1,2,,𝑘, 𝑥𝑖(𝑡)𝑖, 𝑇1𝑖1𝑡,𝑥(𝑡)(𝑢1𝑖(𝑡))𝑎1(𝑥1(𝑡)), 𝑇2𝑖2𝑡,𝑥(𝑡)(𝑢2𝑖(𝑡))𝑎2(𝑥2(𝑡)), …, 𝑇𝑘𝑖𝑘𝑡,𝑥(𝑡)(𝑢𝑘𝑖(𝑡))𝑎𝑘(𝑥𝑘(𝑡)) such that𝐹𝑖𝑡𝑥1𝑝1𝑡𝑥1,𝑥2𝑝2𝑡𝑥2,,𝑥𝑘𝑝𝑘𝑡𝑥𝑘+𝑁𝑖𝑡𝑢𝑖1,𝑢𝑖2,,𝑢𝑖𝑘,𝑦𝑖(𝑡)𝑓𝑖𝑡𝑥𝑖𝜑𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝜑𝑖𝑡𝑦𝑖,𝑡Ω,𝑦𝑖(𝑡)𝑖.(4.4)

We remark that system of random generalized variational inclusions (4.3) and system of random generalized mixed variational inequalities (4.4) include as special cases, many kinds of random variational inequalities and random variational inclusions of [17, 1921], etc.

Lemma 4.1. For 𝑖=1,2,,𝑘, let 𝐻𝑖𝐸𝑖×𝐸𝑖𝐸𝑖 be a single-valued mapping and 𝜂𝑖Ω×𝐸𝑖×𝐸𝑖𝐸𝑖, 𝜙𝑖,𝐴𝑖,𝐵𝑖Ω×𝐸𝑖𝐸𝑖 random single-valued mappings such that 𝐻𝑖(𝐴𝑖,𝐵𝑖) be 𝛼𝑖-strongly 𝜂𝑖-accretive with respect to 𝐴𝑖 and 𝛽𝑖-relaxed 𝜂𝑖-accretive with respect to 𝐵𝑖. Then the set of measurable mappings 𝑥𝑖,𝑢1𝑖,𝑢2𝑖,,𝑢𝑘𝑖Ω𝐸𝑖(𝑖=1,2,,𝑘) is a random solution of problem (4.3) if and only if for all 𝑡Ω, 𝑥𝑖(𝑡)𝐸𝑖, 𝑢1𝑖𝑇(𝑡)1𝑖t(𝑥1), 𝑢2𝑖𝑇(𝑡)2𝑖t(𝑥2),,𝑢𝑘𝑖𝑇(𝑡)𝑘𝑖t(𝑥𝑘), 𝑣𝑖𝑆(𝑡)𝑖t(𝑥𝑖), and 𝑓𝑖𝑡𝑥𝑖=𝑅𝐻𝑖(,),𝜂𝑖𝑡𝑀𝑖𝑡,𝑣𝑖,𝜙𝑖𝑡𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑖,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝜙𝑖𝑡𝐹𝑖𝑡𝑥1𝑝1𝑡𝑥1,𝑥2𝑝2𝑡𝑥2,,𝑥𝑘𝑝𝑘𝑡𝑥𝑘𝜙𝑖𝑡𝑁𝑖𝑡𝑢𝑖1,𝑢𝑖2,,𝑢𝑖𝑘,(4.5) where 𝑅𝐻𝑖(,),𝜂𝑖𝑡𝑀𝑖𝑡(,𝑣𝑖),𝜙𝑖𝑡=(𝐻𝑖(𝐴𝑖𝑡,𝐵𝑖𝑡)+𝜙𝑖𝑡𝑀𝑖𝑡(,𝑣𝑖))1.

Algorithm 4.2. Suppose that for 𝑖,𝑗=1,2,,𝑘, 𝑇𝑗𝑖Ω×𝐸𝑗𝖥(𝐸𝑖), 𝑆𝑖Ω×𝐸𝑖𝖥(𝐸𝑖) be random fuzzy mappings satisfying the condition (C). Let for 𝑖=1,2,,𝑘, 𝑇1𝑖Ω×𝐸1CB(𝐸𝑖), 𝑇2𝑖Ω×𝐸2CB(𝐸𝑖𝑇),,𝑘𝑖Ω×𝐸𝑘CB(𝐸𝑖), 𝑆𝑖Ω×𝐸𝑖CB(𝐸𝑖) be 𝐻-continuous random multivalued mappings induced by 𝑇1𝑖,𝑇2𝑖,,𝑇𝑘𝑖 and 𝑆𝑖, respectively. Let 𝐻𝑖𝐸𝑖×𝐸𝑖𝐸𝑖 be a single-valued mapping; 𝜂𝑖Ω×𝐸𝑖×𝐸𝑖𝐸𝑖, 𝜙𝑖,𝐴𝑖,𝐵𝑖Ω×𝐸𝑖𝐸𝑖, 𝐹𝑖,𝑁𝑖Ω×𝑘𝑗=1𝐸𝑗𝐸𝑖 random single-valued mappings; the random multivalued mapping 𝑀𝑖Ω×𝐸𝑖×𝐸𝑖2𝐸𝑖 be (𝐻𝑖(,),𝜙𝑖)-𝜂𝑖-accretive with respect to 𝐴𝑖 and 𝐵𝑖 in the second argument. For any given measurable mapping 𝑥𝑖Ω𝐸𝑖(𝑖=1,2,,𝑘), the multivalued mappings 𝑇1𝑖(,𝑥01()), 𝑇2𝑖(,𝑥02𝑇()),,𝑘𝑖(,𝑥0𝑘()), 𝑆𝑖(,𝑥0𝑖())(𝑖=1,2,,𝑘) are measurable by Lemma 2.9. Hence for 𝑖=1,2,,𝑘, there exist measurable selections 𝑢01𝑖Ω𝐸𝑖 of 𝑇1𝑖(,𝑥01()), 𝑢02𝑖Ω𝐸𝑖 of 𝑇2𝑖(,𝑥02()),,𝑢0𝑘𝑖Ω𝐸𝑖 of 𝑇𝑘𝑖(,𝑥0𝑘()) and 𝑣0𝑖Ω𝐸𝑖 of 𝑆𝑖(,𝑥0𝑖()), by Himmelberg [31]. Let for 𝑖=1,2,,𝑘, 𝑥1𝑖(𝑡)=𝑥0𝑖(𝑡)𝑓𝑖𝑡𝑥0𝑖+𝑅𝐻𝑖(,),𝜂𝑖𝑡𝑀𝑖𝑡,𝑣0𝑖,𝜙𝑖𝑡𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥0𝑖,𝐵𝑖𝑡𝑓𝑖𝑡𝑥0𝑖𝜙𝑖𝑡𝐹𝑖𝑡𝑥01𝑝1𝑡𝑥01,𝑥02𝑝2𝑡𝑥02,,𝑥0𝑘𝑝𝑘𝑡𝑥0𝑘𝜙𝑖𝑡𝑁𝑖𝑡𝑢0𝑖1,𝑢0𝑖2,,𝑢0𝑖𝑘.(4.6) It is easy to see that for 𝑖=1,2,,𝑘, 𝑥1𝑖Ω𝐸𝑖 is measurable. By Lemma 2.10, there exist measurable selections 𝑢11𝑖Ω𝐸𝑖 of 𝑇1𝑖(,𝑥11()), 𝑢12𝑖Ω𝐸𝑖 of 𝑇2𝑖(,𝑥12()),,𝑢1𝑘𝑖Ω𝐸𝑖 of 𝑇𝑘𝑖(,𝑥1𝑘()) and 𝑣1𝑖Ω𝐸𝑖 of 𝑆𝑖(,𝑥1𝑖())(𝑖=1,2,,𝑘) such that for all 𝑡Ω and 𝑖=1,2,,𝑘, 𝑢01𝑖(𝑡)𝑢11𝑖𝐻𝑇(𝑡)(1+1)1𝑖𝑡𝑥01,𝑇1𝑖𝑡𝑥11,𝑢02𝑖(𝑡)𝑢12𝑖𝐻𝑇(𝑡)(1+1)2𝑖𝑡𝑥02,𝑇2𝑖𝑡𝑥12,𝑢0𝑘𝑖(𝑡)𝑢1𝑘𝑖𝐻𝑇(𝑡)(1+1)𝑘𝑖𝑡𝑥0𝑘,𝑇𝑘𝑖𝑡𝑥1𝑘,𝑣0𝑖(𝑡)𝑣1𝑖𝐻𝑆(𝑡)(1+1)𝑖𝑡𝑥0𝑖,𝑆𝑖𝑡𝑥1𝑖.(4.7) Let for 𝑖=1,2,,𝑘, 𝑥2𝑖(𝑡)=𝑥1𝑖(𝑡)𝑓𝑖𝑡𝑥1𝑖+𝑅𝐻𝑖(,),𝜂𝑖𝑡𝑀𝑖𝑡(,𝑣1𝑖),𝜙𝑖𝑡𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥1𝑖,𝐵𝑖𝑡𝑓𝑖𝑡𝑥1𝑖𝜙𝑖𝑡𝐹𝑖𝑡𝑥11𝑝1𝑡𝑥11,𝑥12𝑝2𝑡𝑥12,,𝑥1𝑘𝑝𝑘𝑡𝑥1𝑘𝜙𝑖𝑡𝑁𝑖𝑡𝑢1𝑖1,𝑢1𝑖2,,𝑢1𝑖𝑘,(4.8) then 𝑥2𝑖Ω𝐸𝑖 is measurable. Continuing the above process inductively, we can define the following random iterative sequences {𝑥𝑛𝑖(𝑡)}, {𝑢𝑛1𝑖(𝑡)}, {𝑢𝑛2𝑖(𝑡)},,{𝑢𝑛𝑘𝑖(𝑡)} and {𝑣𝑛𝑖(𝑡)}(𝑖=1,2,,𝑘) for solving problem (4.3) as follows: 𝑥𝑖𝑛+1(𝑡)=𝑥𝑛𝑖(𝑡)𝑓𝑖𝑡𝑥𝑛𝑖+𝑅𝐻𝑖(,),𝜂𝑖𝑡𝑀𝑖𝑡(,𝑣𝑛𝑖),𝜙𝑖𝑡𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖𝜙𝑖𝑡𝐹𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,𝑥𝑛2𝑝2𝑡𝑥𝑛2,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝜙𝑖𝑡𝑁𝑖𝑡𝑢𝑛𝑖1,𝑢𝑛𝑖2,,𝑢𝑛𝑖𝑘,𝑢𝑛1𝑖𝑇(𝑡)1𝑖𝑡𝑥𝑛1,𝑢𝑛2𝑖𝑇(𝑡)2𝑖t𝑥𝑛2,,𝑢𝑛𝑘𝑖𝑇(𝑡)𝑘𝑖𝑡𝑥𝑛𝑘,𝑣𝑛𝑖𝑆(𝑡)𝑖𝑡𝑥𝑛𝑖,𝑢𝑛1𝑖(𝑡)𝑢𝑛+11𝑖1(𝑡)1+𝐻𝑇𝑛+11𝑖𝑡𝑥𝑛1,𝑇1𝑖𝑡𝑥1𝑛+1,𝑢𝑛2𝑖(𝑡)𝑢𝑛+12𝑖1(𝑡)1+𝐻𝑇𝑛+12𝑖𝑡𝑥𝑛2,𝑇2𝑖𝑡𝑥2𝑛+1,𝑢𝑛𝑘𝑖(𝑡)𝑢𝑛+1𝑘𝑖1(𝑡)1+𝐻𝑇𝑛+1𝑘𝑖t𝑥𝑛𝑘,𝑇𝑘𝑖𝑡𝑥𝑘𝑛+1,𝑣𝑛𝑖(𝑡)𝑣𝑖𝑛+11(𝑡)1+𝐻𝑆𝑛+1𝑖𝑡𝑥𝑛𝑖,𝑆𝑖𝑡𝑥𝑖𝑛+1,(4.9) for any 𝑡Ω, 𝑖=1,2,,𝑘 and 𝑛=0,1,2,.

Theorem 4.3. For 𝑖=1,2,,𝑘, let 𝐸𝑖 be a 𝑞-uniformly smooth Banach space and 𝜙𝑖Ω×𝐸𝑖𝐸𝑖 be a 𝜚𝑖-Lipschitz continuous mapping satisfying 𝜙𝑖𝑡(𝑥+𝑦)=𝜙𝑖𝑡(𝑥)+𝜙𝑖𝑡(𝑦) and ker𝜙𝑖𝑡={0}, for all 𝑡Ω. Let 𝜂𝑖Ω×𝐸𝑖×𝐸𝑖𝐸𝑖 be 𝜏𝑖-Lipschitz continuous, 𝐻𝑖𝐸𝑖×𝐸𝑖𝐸𝑖 be a single-valued mapping, and 𝐴𝑖,𝐵𝑖Ω×𝐸𝑖𝐸𝑖 random single-valued mappings such that 𝐻𝑖(𝐴𝑖,𝐵𝑖) be 𝛼𝑖-strongly 𝜂𝑖-accretive with respect to 𝐴𝑖 and 𝛽𝑖-relaxed 𝜂𝑖-accretive with respect to 𝐵𝑖 and 𝐻𝑖(𝐴𝑖,𝐵𝑖) be 𝛿𝑖1-Lipschitz continuous with respect to 𝐴𝑖 and 𝛿𝑖2-Lipschitz continuous with respect to 𝐵𝑖. Let 𝑓𝑖Ω×𝐸𝑖𝐸𝑖 be (𝜖𝑖,𝜇𝑖)-relaxed cocoercive and 𝜉𝑖-Lipschitz continuous, and 𝑝𝑖Ω×𝐸𝑖𝐸𝑖 be 𝛾𝑝𝑖-strongly accretive and 𝜆𝑝𝑖-Lipschitz continuous. Suppose that 𝐹𝑖Ω×𝑘𝑗=1𝐸𝑗𝐸𝑖 be 𝜁𝑖𝑗-Lipschitz continuous in the (𝑗+1) th argument for 𝑗=1,2,,𝑘, 𝑁𝑖Ω×𝑘𝑗=1𝐸𝑗𝐸𝑖 be 𝜈𝑖𝑗-Lipschitz continuous in the (𝑗+1) th argument for 𝑗=1,2,,𝑘. Let 𝑀𝑖Ω×𝐸𝑖×𝐸𝑖2𝐸𝑖 be a random multivalued mapping such that 𝑀𝑖 is a (𝐻𝑖(,),𝜙𝑖)-𝜂𝑖-accretive mapping with respect to 𝐴𝑖 and 𝐵𝑖 in the second argument. Let 𝑇1𝑖Ω×𝐸1𝖥(𝐸𝑖), 𝑇2𝑖Ω×𝐸2𝖥(𝐸𝑖),,𝑇𝑘𝑖Ω×𝐸𝑘𝖥(𝐸𝑖), 𝑆𝑖Ω×𝐸𝑖𝖥(𝐸𝑖) be random fuzzy mappings satisfying the condition (C) and 𝑇1𝑖Ω×𝐸1CB(𝐸𝑖), 𝑇2𝑖Ω×𝐸2CB(𝐸𝑖𝑇),,𝑘𝑖Ω×𝐸𝑘CB(𝐸𝑖), and 𝑆𝑖Ω×𝐸𝑖CB(𝐸𝑖) random multivalued mappings induced by 𝑇1𝑖,𝑇2𝑖,,𝑇𝑘𝑖 and 𝑆𝑖, respectively. Suppose that 𝑇1𝑖, 𝑇2𝑖𝑇,,𝑘𝑖, 𝑆𝑖 are 𝐻-continuous with constants 𝑡1𝑖, 𝑡2𝑖, …, 𝑡𝑘𝑖, and 𝜆𝑠𝑖, respectively.In addition, if 𝑅𝐻𝑖(,),𝜂𝑖𝑡𝑀𝑖𝑡,𝑦𝑖1,𝜙𝑖𝑡𝑧𝑖𝑅𝐻𝑖(,),𝜂𝑖𝑡𝑀𝑖𝑡(,𝑦𝑖2),𝜙𝑖𝑡𝑧𝑖𝜆𝑖(𝑡)𝑦𝑖1(𝑡)𝑦𝑖2(𝑡),𝑡Ω,𝑦𝑖1(𝑡),𝑦𝑖2(𝑡),𝑧𝑖(𝑡)𝐸𝑖(𝑖=1,2,,𝑘),(4.10)0<1+𝑞𝜖1(𝑡)𝜉1(𝑡)𝑞𝑞𝜇1(𝑡)+𝑐𝑞𝜉1(𝑡)𝑞1/𝑞+𝜆1(𝑡)𝜆𝑠1𝜏(𝑡)+1(𝑡)𝑞1𝑟1(𝑡)𝑚1×𝛿(𝑡)11(𝑡)+𝛿12(𝑡)𝑞𝜉1(𝑡)𝑞+𝑞𝜚1(𝑡)1𝑞𝛾𝑝1(𝑡)+𝑐𝑞𝜆𝑝1(𝑡)𝑞1/𝑞𝜁11𝛿(𝑡)11(𝑡)+𝛿12(𝑡)𝑞1𝜉1(𝑡)𝑞1+𝑐𝑞𝜚1(𝑡)𝑞1𝑞𝛾𝑝1(𝑡)+𝑐𝑞𝜆𝑝1(𝑡)𝑞𝜁11(𝑡)𝑞1/𝑞+𝑘𝑗=1𝜚1(𝑡)𝜈1𝑗(𝑡)𝑡1𝑗+(𝑡)𝑘𝑗=2𝜏𝑗(𝑡)𝑞1𝑟𝑗(𝑡)𝑚𝑗𝜚(𝑡)𝑗(𝑡)𝜁𝑗1(𝑡)1𝑞𝛾𝑝1(𝑡)+𝑐𝑞𝜆𝑝1(𝑡)𝑞1/𝑞<1,0<1+𝑞𝜖2(𝑡)𝜉2(𝑡)𝑞𝑞𝜇2(𝑡)+𝑐𝑞𝜉2(𝑡)𝑞1/𝑞+𝜆2(𝑡)𝜆𝑠2𝜏(𝑡)+2(𝑡)𝑞1𝑟2(𝑡)𝑚2(×𝛿𝑡)21(𝑡)+𝛿22(𝑡)𝑞𝜉2(𝑡)𝑞+𝑞𝜚2(𝑡)1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞1/𝑞𝜁22𝛿(𝑡)21(𝑡)+𝛿22(𝑡)𝑞1𝜉2(𝑡)𝑞1+𝑐𝑞𝜚2(𝑡)𝑞1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞𝜁22(𝑡)𝑞1/𝑞+𝑘𝑗=1𝜚2(𝑡)𝜈2𝑗(𝑡)𝑡2𝑗+𝜏(𝑡)1(𝑡)𝑞1𝑟1(𝑡)𝑚1𝜚(𝑡)1(𝑡)𝜁12(𝑡)1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞1/𝑞+𝑘𝑗=3𝜏𝑗(𝑡)𝑞1𝑟𝑗(𝑡)𝑚𝑗(𝜚𝑡)𝑗(𝑡)𝜁𝑗2(𝑡)1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞1/𝑞<1,,0<1+𝑞𝜖𝑘(𝑡)𝜉𝑘(𝑡)𝑞𝑞𝜇𝑘(𝑡)+𝑐𝑞𝜉𝑘(𝑡)𝑞1/𝑞+𝜆𝑘(𝑡)𝜆𝑠𝑘𝜏(𝑡)+𝑘(𝑡)𝑞1𝑟𝑘(𝑡)𝑚𝑘×𝛿(𝑡)𝑘1(𝑡)+𝛿𝑘2(𝑡)𝑞𝜉𝑘(𝑡)𝑞+𝑞𝜚𝑘(𝑡)1𝑞𝛾𝑝𝑘(𝑡)+𝑐𝑞𝜆𝑝𝑘(𝑡)𝑞1/𝑞𝜁𝑘𝑘(𝛿𝑡)𝑘1(𝑡)+𝛿𝑘2(𝑡)𝑞1𝜉𝑘(𝑡)𝑞1+𝑐𝑞𝜚𝑘(𝑡)𝑞1𝑞𝛾𝑝𝑘(𝑡)+𝑐𝑞𝜆𝑝𝑘(𝑡)𝑞𝜁𝑘𝑘(𝑡)𝑞1/𝑞+𝑘𝑗=1𝜚𝑘(𝑡)𝜈𝑘𝑗(𝑡)𝑡𝑘𝑗+(𝑡)𝑘1𝑗=1𝜏𝑗(𝑡)𝑞1𝑟𝑗(𝑡)𝑚𝑗𝜚(𝑡)𝑗(𝑡)𝜁𝑗𝑘(𝑡)1𝑞𝛾𝑝𝑘(𝑡)+𝑐𝑞𝜆𝑝𝑘(𝑡)𝑞1/𝑞<1,(4.11) then there exist measurable mappings 𝑥𝑖, 𝑢1𝑖,𝑢2𝑖,,𝑢𝑘𝑖,𝑣𝑖Ω𝐸𝑖 such that (4.3) holds. Moreover for all 𝑡Ω,𝑥𝑛𝑖(𝑡)𝑥𝑖(𝑡),𝑢𝑛1𝑖(𝑡)𝑢1𝑖(𝑡), 𝑢𝑛2𝑖(𝑡)𝑢2𝑖(𝑡),,𝑢𝑛𝑘𝑖(𝑡)𝑢𝑘𝑖(𝑡), 𝑣𝑛𝑖(𝑡)𝑣𝑖(𝑡), where {𝑥𝑛𝑖(𝑡)}, and {𝑢𝑛1𝑖(𝑡)},,{𝑢𝑛𝑘𝑖(𝑡)}, {𝑣𝑛𝑖(𝑡)} are random sequences obtained by Algorithm 4.2.

Proof. For 𝑖=1,2,,𝑘, from (4.10), Lemma 4.1, and Algorithm 4.2, we have 𝑥𝑖𝑛+1(𝑡)𝑥𝑛𝑖=𝑥(𝑡)𝑛𝑖(𝑡)𝑓𝑖𝑡𝑥𝑛𝑖+𝑅𝐻𝑖(,),𝜂𝑖𝑡𝑀𝑖𝑡,𝑣𝑛𝑖,𝜙𝑖𝑡𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖𝜙𝑖𝑡𝐹𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,𝑥𝑛2𝑝2𝑡𝑥𝑛2,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝜙𝑖𝑡𝑁𝑖𝑡𝑢𝑛𝑖1,𝑢𝑛𝑖2,,𝑢𝑛𝑖𝑘𝑥𝑖𝑛1(𝑡)𝑓𝑖𝑡𝑥𝑖𝑛1+𝑅𝐻𝑖(,),𝜂𝑖𝑡𝑀𝑖𝑡,𝑣𝑖𝑛1,𝜙𝑖𝑡𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1𝜙𝑖𝑡𝐹𝑖𝑡𝑥1𝑛1𝑝1𝑡𝑥1𝑛1,𝑥2𝑛1𝑝2𝑡𝑥2𝑛1,,𝑥𝑘𝑛1𝑝𝑘𝑡𝑥𝑘𝑛1𝜙𝑖𝑡𝑁𝑖𝑡𝑢𝑛1𝑖1,𝑢𝑛1𝑖2,,𝑢𝑛1𝑖𝑘𝑥𝑛𝑖(𝑡)𝑥𝑖𝑛1𝑓(𝑡)𝑖𝑡𝑥𝑛𝑖𝑓𝑖𝑡𝑥𝑖𝑛1+𝑅𝐻𝑖(,),𝜂𝑖𝑡𝑀𝑖𝑡,𝑣𝑛𝑖,𝜙𝑖𝑡𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖𝜙𝑖𝑡𝐹𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,𝑥𝑛2𝑝2𝑡𝑥𝑛2,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝜙𝑖𝑡𝑁𝑖𝑡𝑢𝑛𝑖1,𝑢𝑛𝑖2,,𝑢𝑛𝑖𝑘𝑅𝐻𝑖(,),𝜂𝑖𝑡𝑀𝑖𝑡,𝑣𝑛𝑖,𝜙𝑖𝑡𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1𝜙𝑖𝑡𝐹𝑖𝑡𝑥1𝑛1𝑝1𝑡𝑥1𝑛1,𝑥2𝑛1𝑝2𝑡𝑥2𝑛1,,𝑥𝑘𝑛1𝑝𝑘𝑡𝑥𝑘𝑛1𝜙𝑖𝑡𝑁𝑖𝑡𝑢𝑛1𝑖1,𝑢𝑛1𝑖2,,𝑢𝑛1𝑖𝑘+𝑅𝐻𝑖(,),𝜂𝑖𝑡𝑀𝑖𝑡,𝑣𝑛𝑖,𝜙𝑖𝑡𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1𝜙𝑖𝑡𝐹𝑖𝑡𝑥1𝑛1𝑝1𝑡𝑥1𝑛1,𝑥2𝑛1𝑝2𝑡𝑥2𝑛1,,𝑥𝑘𝑛1𝑝𝑘𝑡𝑥𝑘𝑛1𝜙𝑖𝑡𝑁𝑖𝑡𝑢𝑛1𝑖1,𝑢𝑛1𝑖2,,𝑢𝑛1𝑖𝑘𝑅𝐻𝑖(,),𝜂𝑖𝑡𝑀𝑖𝑡,𝑣𝑖𝑛1,𝜙𝑖𝑡𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1𝜙𝑖𝑡𝐹𝑖𝑡𝑥1𝑛1𝑝1𝑡𝑥1𝑛1,𝑥2𝑛1𝑝2𝑡𝑥2𝑛1,,𝑥𝑘𝑛1𝑝𝑘𝑡𝑥𝑘𝑛1𝜙𝑖𝑡𝑁𝑖𝑡𝑢𝑛1𝑖1,𝑢𝑛1𝑖2,,𝑢𝑛1𝑖𝑘𝑥𝑛𝑖(𝑡)𝑥𝑖𝑛1𝑓(𝑡)𝑖𝑡𝑥𝑛𝑖𝑓𝑖𝑡𝑥𝑖𝑛1+𝜏𝑖(𝑡)𝑞1𝑟𝑖(𝑡)𝑚𝑖𝐻(𝑡)𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1𝜙𝑖𝑡𝐹𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,𝑥𝑛2𝑝2𝑡𝑥𝑛2,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝜙𝑖𝑡𝐹𝑖𝑡𝑥1𝑛1𝑝1𝑡𝑥1𝑛1,𝑥2𝑛1𝑝2𝑡𝑥2𝑛1,,𝑥𝑘𝑛1𝑝𝑘𝑡𝑥𝑘𝑛1+𝜏𝑖(𝑡)𝑞1𝑟𝑖(𝑡)𝑚𝑖𝜚(𝑡)𝑖𝑁(𝑡)𝑖𝑡𝑢𝑛𝑖1,𝑢𝑛𝑖2,,𝑢𝑛𝑖𝑘𝑁𝑖𝑡𝑢𝑛1𝑖1,𝑢𝑛1𝑖2,,𝑢𝑛1𝑖𝑘+𝜆𝑖(𝑣𝑡)𝑛𝑖(𝑡)𝑣𝑖𝑛1(.𝑡)(4.12) Since 𝑓𝑖Ω×𝐸𝑖𝐸𝑖 be (𝜖𝑖,𝜇𝑖)-relaxed cocoercive and 𝜉𝑖-Lipschitz continuous, we have 𝑥𝑛𝑖(𝑡)𝑥𝑖𝑛1𝑓(𝑡)𝑖𝑡𝑥𝑛𝑖𝑓𝑖𝑡𝑥𝑖𝑛1𝑞𝑥𝑛𝑖(𝑡)𝑥𝑖𝑛1(𝑡)𝑞𝑓𝑞𝑖𝑡𝑥𝑛𝑖𝑓𝑖𝑡𝑥𝑖𝑛1,𝐽𝑞𝑥𝑛𝑖(𝑡)𝑥𝑖𝑛1(𝑡)+𝑐𝑞𝑓𝑖𝑡𝑥𝑛𝑖𝑓𝑖𝑡𝑥𝑖𝑛1𝑞1+𝑞𝜖𝑖(𝑡)𝜉𝑖(𝑡)𝑞𝑞𝜇𝑖(𝑡)+𝑐𝑞𝜉𝑖(𝑡)𝑞𝑥𝑛𝑖(𝑡)𝑥𝑖𝑛1(𝑡)𝑞.(4.13) Using 𝛾𝑝𝑖-strongly accretivity and 𝜆𝑝𝑖-Lipschitz continuity of 𝑝𝑖, 𝜚𝑖-Lipschitz continuity of 𝜑𝑖 we have 𝑥𝑛𝑖(𝑡)𝑥𝑖𝑛1𝑝(𝑡)𝑖𝑡𝑥𝑛𝑖𝑝𝑖𝑡𝑥𝑖𝑛1𝑞𝑥𝑛𝑖(𝑡)𝑥𝑖𝑛1(𝑡)𝑞𝑝𝑞𝑖𝑡𝑥𝑛𝑖𝑝𝑖𝑡𝑥𝑖𝑛1,𝐽𝑞𝑥𝑛𝑖(𝑡)𝑥𝑖𝑛1(𝑡)+𝑐𝑞𝑝𝑖𝑡𝑥𝑛𝑖𝑝𝑖𝑡𝑥𝑖𝑛1𝑞1𝑞𝛾𝑝𝑖(𝑡)+𝑐𝑞𝜆𝑝𝑖(𝑡)𝑞𝑥𝑛𝑖(𝑡)𝑥𝑖𝑛1(𝑡)𝑞,𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1𝜙𝑖𝑡𝐹𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,𝑥𝑛2𝑝2𝑡𝑥𝑛2,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝜙𝑖𝑡𝐹𝑖𝑡𝑥1𝑛1𝑝1𝑡𝑥1𝑛1,𝑥2𝑛1𝑝2𝑡𝑥2𝑛1,,𝑥𝑘𝑛1𝑝𝑘𝑡𝑥𝑘𝑛1𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1𝜙𝑖𝑡𝐹𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,,𝑥𝑛𝑖1𝑝𝑖1𝑡𝑥𝑛𝑖1,𝑥𝑛𝑖𝑝𝑖𝑡𝑥𝑛𝑖,𝑥𝑛𝑖+1𝑝𝑖+1𝑡𝑥𝑛𝑖+1,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝜙𝑖𝑡𝐹𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,,𝑥𝑛𝑖1𝑝𝑖1𝑡𝑥𝑛𝑖1,𝑥𝑖𝑛1𝑝𝑖𝑡𝑥𝑖𝑛1,𝑥𝑛𝑖+1𝑝𝑖+1𝑡𝑥𝑛𝑖+1,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘+𝜚𝑖𝐹(𝑡)𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,,𝑥𝑛𝑖1𝑝𝑖1𝑡𝑥𝑛𝑖1,𝑥𝑖𝑛1𝑝𝑖𝑡𝑥𝑖𝑛1,𝑥𝑛𝑖+1𝑝𝑖+1𝑡𝑥𝑛𝑖+1,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝐹𝑖𝑡𝑥1𝑛1𝑝1𝑡𝑥1𝑛1,,𝑥𝑛1𝑖1𝑝𝑖1𝑡𝑥𝑛1𝑖1,𝑥𝑖𝑛1𝑝𝑖𝑡𝑥𝑖𝑛1,𝑥𝑛1𝑖+1𝑝𝑖+1𝑡𝑥𝑛1𝑖+1,,𝑥𝑘𝑛1𝑝𝑘𝑡𝑥𝑘𝑛1.(4.14) Since 𝐻𝑖(𝐴𝑖,𝐵𝑖) is 𝛿𝑖1-Lipschitz continuous with respect to 𝐴𝑖 and 𝛿𝑖2-Lipschitz continuous with respect to 𝐵𝑖, we have 𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖+𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1𝛿𝑖1(𝑡)+𝛿𝑖2(𝑓𝑡)𝑖𝑡𝑥𝑛𝑖𝑓𝑖𝑡𝑥𝑖𝑛1𝛿𝑖1(𝑡)+𝛿𝑖2𝜉(𝑡)𝑖𝑥(𝑡)𝑛𝑖(𝑡)𝑥𝑖𝑛1.(𝑡)(4.15) Since 𝐹𝑖Ω×𝑘𝑗=1𝐸𝑗𝐸𝑖 is 𝜁𝑖𝑖-Lipschitz continuous in the (𝑖+1)th argument, by (4.15), we have 𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1𝜙𝑖𝑡𝐹𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,,𝑥𝑛𝑖1𝑝𝑖1𝑡𝑥𝑛𝑖1,𝑥𝑛𝑖𝑝𝑖𝑡𝑥𝑛𝑖,𝑥𝑛𝑖+1𝑝𝑖+1𝑡𝑥𝑛𝑖+1,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝜙𝑖𝑡𝐹𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,,𝑥𝑛𝑖1𝑝𝑖1𝑡𝑥𝑛𝑖1,𝑥𝑖𝑛1𝑝𝑖𝑡𝑥𝑖𝑛1,𝑥𝑛𝑖+1𝑝𝑖+1𝑡𝑥𝑛𝑖+1,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝑞𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1𝑞𝜙𝑞𝑖𝑡𝐹𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,,𝑥𝑛𝑖1𝑝𝑖1𝑡𝑥𝑛𝑖1,𝑥𝑛𝑖𝑝𝑖𝑡𝑥𝑛𝑖,𝑥𝑛𝑖+1𝑝𝑖+1𝑡𝑥𝑛𝑖+1,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝜙𝑖𝑡𝐹𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,,𝑥𝑛𝑖1𝑝𝑖1𝑡𝑥𝑛𝑖1,𝑥𝑖𝑛1𝑝𝑖𝑡𝑥𝑖𝑛1,𝑥𝑛𝑖+1𝑝𝑖+1𝑡𝑥𝑛𝑖+1,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘,𝐽𝑞𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑛𝑖𝐻𝑖𝐴𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1,𝐵𝑖𝑡𝑓𝑖𝑡𝑥𝑖𝑛1+𝑐𝑞𝜚𝑖(𝑡)𝑞𝐹𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,,𝑥𝑛𝑖1𝑝𝑖1𝑡𝑥𝑛𝑖1,𝑥𝑛𝑖𝑝𝑖𝑡𝑥𝑛𝑖,𝑥𝑛𝑖+1𝑝𝑖+1𝑡𝑥𝑛𝑖+1,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝐹𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,,𝑥𝑛𝑖1𝑝𝑖1𝑡𝑥𝑛𝑖1,𝑥𝑖𝑛1𝑝𝑖𝑡𝑥𝑖𝑛1,𝑥𝑛𝑖+1𝑝𝑖+1𝑡𝑥𝑛𝑖+1,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝑞𝛿𝑖1(𝑡)+𝛿𝑖2(𝑡)𝑞𝜉𝑖(𝑡)𝑞+𝑞𝜚𝑖(𝑡)1𝑞𝛾𝑝𝑖(𝑡)+𝑐𝑞𝜆𝑝𝑖(𝑡)𝑞1/𝑞𝜁𝑖𝑖𝛿(𝑡)𝑖1(𝑡)+𝛿𝑖2(𝑡)𝑞1𝜉𝑖(𝑡)𝑞1+𝑐𝑞𝜚𝑖(𝑡)𝑞1𝑞𝛾𝑝𝑖(𝑡)+𝑐𝑞𝜆𝑝𝑖(𝑡)𝑞𝜁𝑖𝑖(𝑡)𝑞𝑥𝑛𝑖(𝑡)𝑥𝑖𝑛1(𝑡)𝑞,𝑖=1,2,,𝑘.(4.16) Since 𝐹𝑖Ω×𝑘𝑗=1𝐸𝑗𝐸𝑖 is 𝜁𝑖𝑗-Lipschitz continuous in the (𝑗+1)th argument, for 𝑗=1,,𝑖1,𝑖+1,,𝑘, we have 𝐹𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,,𝑥𝑛𝑖1𝑝𝑖1𝑡𝑥𝑛𝑖1,𝑥𝑖𝑛1𝑝𝑖𝑡𝑥𝑖𝑛1,𝑥𝑛𝑖+1𝑝𝑖+1𝑡𝑥𝑛𝑖+1𝑥,,𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝐹𝑖𝑡𝑥1𝑛1𝑝1𝑡𝑥1𝑛1,,𝑥𝑛1𝑖1𝑝𝑖1𝑡𝑥𝑛1𝑖1,𝑥𝑖𝑛1𝑝𝑖𝑡𝑥𝑖𝑛1,𝑥𝑛1𝑖+1𝑝𝑖+1𝑡𝑥𝑛1𝑖+1,,𝑥𝑘𝑛1𝑝𝑘𝑡𝑥𝑘𝑛1𝐹𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,𝑥𝑛2𝑝2𝑡𝑥𝑛2,,𝑥𝑛𝑖1𝑝𝑖1𝑡𝑥𝑛𝑖1,𝑥𝑖𝑛1𝑝𝑖𝑡𝑥𝑖𝑛1,𝑥𝑛𝑖+1𝑝𝑖+1𝑡𝑥𝑛𝑖+1,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝐹𝑖𝑡𝑥1𝑛1𝑝1𝑡𝑥1𝑛1,𝑥𝑛2𝑝2𝑡𝑥𝑛2,,𝑥𝑛𝑖1𝑝𝑖1𝑡𝑥𝑛𝑖1,𝑥𝑖𝑛1𝑝𝑖𝑡𝑥𝑖𝑛1,𝑥𝑛𝑖+1𝑝𝑖+1𝑡𝑥𝑛𝑖+1,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘+𝐹𝑖𝑡𝑥1𝑛1𝑝1𝑡𝑥1𝑛1,𝑥𝑛2𝑝2𝑡𝑥𝑛2,𝑥𝑛3𝑝3𝑡𝑥𝑛3,,𝑥𝑛𝑖1𝑝𝑖1𝑡𝑥𝑛𝑖1,𝑥𝑖𝑛1𝑝𝑖𝑡𝑥𝑖𝑛1,𝑥𝑛𝑖+1𝑝𝑖+1𝑡𝑥𝑛𝑖+1,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝐹𝑖𝑡𝑥1𝑛1𝑝1𝑡𝑥1𝑛1,𝑥2𝑛1𝑝2𝑡𝑥2𝑛1,𝑥𝑛3𝑝3𝑡𝑥𝑛3,,𝑥𝑛𝑖1𝑝𝑖1𝑡𝑥𝑛𝑖1,𝑥𝑖𝑛1𝑝𝑖𝑡𝑥𝑖𝑛1,𝑥𝑛𝑖+1𝑝𝑖+1𝑡𝑥𝑛𝑖+1,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝐹++𝑖𝑡𝑥1𝑛1𝑝1𝑡𝑥1𝑛1,𝑥2𝑛1𝑝2𝑡𝑥2𝑛1,𝑥3𝑛1𝑝3𝑡𝑥3𝑛1𝑥,,𝑛1𝑖1𝑝𝑖1𝑡𝑥𝑛1𝑖1,𝑥𝑖𝑛1𝑝𝑖𝑡𝑥𝑖𝑛1,𝑥𝑛1𝑖+1𝑝𝑖+1𝑡𝑥𝑛1𝑖+1𝑥,,𝑛1𝑘1𝑝𝑘1𝑡𝑥𝑛1𝑘1,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘𝐹𝑖𝑡𝑥1𝑛1𝑝1𝑡𝑥1𝑛1,𝑥2𝑛1𝑝2𝑡𝑥2𝑛1,𝑥3𝑛1𝑝3𝑡𝑥3𝑛1𝑥,,𝑛1𝑖1𝑝𝑖1𝑡𝑥𝑛1𝑖1,𝑥𝑖𝑛1𝑝𝑖𝑡𝑥𝑖𝑛1,𝑥𝑛1𝑖+1𝑝𝑖+1𝑡𝑥𝑛1𝑖+1𝑥,,𝑛1𝑘1𝑝𝑘1𝑡𝑥𝑛1𝑘1,𝑥𝑘𝑛1𝑝𝑘𝑡𝑥𝑘𝑛1𝜁𝑖1(𝑡)1𝑞𝛾𝑝1(𝑡)+𝑐𝑞𝜆𝑝1(𝑡)𝑞1/𝑞𝑥𝑛1(𝑡)𝑥1𝑛1(𝑡)+𝜁𝑖2(𝑡)1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞1/𝑞𝑥𝑛2(𝑡)𝑥2𝑛1(𝑡)++𝜁𝑖,𝑖1(𝑡)1𝑞𝛾𝑝𝑖1(𝑡)+𝑐𝑞𝜆𝑝𝑖1(𝑡)𝑞1/𝑞𝑥𝑛𝑖1(𝑡)𝑥𝑛1𝑖1(𝑡)+𝜁𝑖,𝑖+1(𝑡)1𝑞𝛾𝑝𝑖+1(𝑡)+𝑐𝑞𝜆𝑝𝑖+1(𝑡)𝑞1/𝑞𝑥𝑛𝑖+1(𝑡)𝑥𝑛1𝑖+1(𝑡)++𝜁𝑖𝑘(𝑡)1𝑞𝛾𝑝𝑘(𝑡)+𝑐𝑞𝜆𝑝𝑘(𝑡)𝑞1/𝑞𝑥𝑛𝑘(𝑡)𝑥𝑘𝑛1=(𝑡)𝑖1𝑗=1𝜁𝑖𝑗(𝑡)1𝑞𝛾𝑝𝑗(𝑡)+𝑐𝑞𝜆𝑝𝑗(𝑡)𝑞1/𝑞𝑥𝑛𝑗(𝑡)𝑥𝑗𝑛1+(𝑡)𝑘𝑗=𝑖+1𝜁𝑖𝑗(𝑡)1𝑞𝛾𝑝𝑗(𝑡)+𝑐𝑞𝜆𝑝𝑗(𝑡)𝑞1/𝑞𝑥𝑛𝑗(𝑡)𝑥𝑗𝑛1(𝑡),𝑖=1,2,,𝑘.(4.17) It follows from the Lipschitz continuity of 𝑁𝑖, the 𝐻-continuity of 𝑇1𝑖,𝑇2𝑖𝑇,,𝑘𝑖(𝑖=1,2,,𝑘) that 𝑁𝑖𝑡𝑢𝑛𝑖1,𝑢𝑛𝑖2,,𝑢𝑛𝑖𝑘𝑁𝑖𝑡𝑢𝑛1𝑖1,𝑢𝑛1𝑖2,,𝑢𝑛1𝑖𝑘𝑁𝑖𝑡𝑢𝑛𝑖1,𝑢𝑛𝑖2,,𝑢𝑛𝑖𝑘𝑁𝑖𝑡𝑢𝑛1𝑖1,𝑢𝑛𝑖2,,𝑢𝑛𝑖𝑘+𝑁𝑖𝑡𝑢𝑛1𝑖1,𝑢𝑛𝑖2,𝑢𝑛𝑖3,,𝑢𝑛𝑖𝑘𝑁𝑖𝑡𝑢𝑛1𝑖1,𝑢𝑛1𝑖2,𝑢𝑛𝑖3,,𝑢𝑛𝑖𝑘𝑁++𝑖𝑡𝑢𝑛1𝑖1,𝑢𝑛1𝑖2,𝑢𝑛1𝑖3,,𝑢𝑛1𝑖,𝑘1,𝑢𝑛𝑖𝑘𝑁𝑖𝑡𝑢𝑛1𝑖1,𝑢𝑛1𝑖2,𝑢𝑛1𝑖3,,𝑢𝑛1𝑖,𝑘1,𝑢𝑛1𝑖𝑘𝑘𝑗=1𝜈𝑖𝑗(𝑢𝑡)𝑛𝑖𝑗(𝑡)𝑢𝑛1𝑖𝑗(𝑡)𝑘𝑗=1𝜈𝑖𝑗(1𝑡)1+𝑛𝐻𝑇𝑖𝑗𝑡𝑥𝑛𝑖,𝑇𝑖𝑗𝑡𝑥𝑖𝑛1𝑘𝑗=1𝜈𝑖𝑗1(𝑡)1+𝑛𝑡𝑖𝑗𝑥(𝑡)𝑛𝑖(𝑡)𝑥𝑖𝑛1(𝑡),𝑖=1,2,,𝑘.(4.18) It follows from (4.12)–(4.18) that for each 𝑖=1,2,,𝑘, 𝑥𝑖𝑛+1(𝑡)𝑥𝑛𝑖(𝑡)1+𝑞𝜖𝑖(𝑡)𝜉𝑖(𝑡)𝑞𝑞𝜇𝑖(𝑡)+𝑐𝑞𝜉𝑖(𝑡)𝑞1/𝑞+𝜆𝑖(𝑡)𝜆𝑠𝑖1(𝑡)1+𝑛+𝜏𝑖(𝑡)𝑞1𝑟𝑖(𝑡)𝑚𝑖×𝛿(𝑡)𝑖1(𝑡)+𝛿𝑖2(𝑡)𝑞𝜉𝑖(𝑡)𝑞+𝑞𝜚𝑖(𝑡)1𝑞𝛾𝑝𝑖(𝑡)+𝑐𝑞𝜆𝑝𝑖(𝑡)𝑞1/𝑞𝜁𝑖𝑖𝛿(𝑡)𝑖1(𝑡)+𝛿𝑖2(𝑡)𝑞1𝜉𝑖(𝑡)𝑞1+𝑐𝑞𝜚𝑖(𝑡)𝑞1𝑞𝛾𝑝𝑖(𝑡)+𝑐𝑞𝜆𝑝𝑖(𝑡)𝑞𝜁𝑖𝑖(𝑡)𝑞1/𝑞+𝑘𝑗=1𝜚𝑖(𝑡)𝜈𝑖𝑗1(𝑡)1+𝑛𝑡𝑖𝑗(𝑡)𝑥𝑛𝑖(𝑡)𝑥𝑖𝑛1+(𝑡)𝑖1𝑗=1𝜏𝑖(𝑡)𝑞1𝑟𝑖(𝑡)𝑚𝑖𝜚(𝑡)𝑖(𝑡)𝜁𝑖𝑗(𝑡)1𝑞𝛾𝑝𝑗(𝑡)+𝑐𝑞𝜆𝑝𝑗(𝑡)𝑞1/𝑞𝑥𝑛𝑗(𝑡)𝑥𝑗𝑛1+(𝑡)𝑘𝑗=𝑖+1𝜏𝑖(𝑡)𝑞1𝑟𝑖(𝑡)𝑚𝑖𝜚(𝑡)𝑖(𝑡)𝜁𝑖𝑗(𝑡)1𝑞𝛾𝑝𝑗(𝑡)+𝑐𝑞𝜆𝑝𝑗(𝑡)𝑞1/𝑞𝑥𝑛𝑗(𝑡)𝑥𝑗𝑛1(𝑡).(4.19) Therefore, 𝑘𝑖=1𝑥𝑖𝑛+1(𝑡)𝑥𝑛𝑖(𝑡)𝑘𝑖=11+𝑞𝜖𝑖(𝑡)𝜉𝑖(𝑡)𝑞𝑞𝜇𝑖(𝑡)+𝑐𝑞𝜉𝑖(𝑡)𝑞1/𝑞+𝜆𝑖(𝑡)𝜆𝑠𝑖1(𝑡)1+𝑛+𝜏𝑖(𝑡)𝑞1𝑟𝑖(𝑡)𝑚𝑖×𝛿(𝑡)𝑖1(𝑡)+𝛿𝑖2(𝑡)𝑞𝜉𝑖(𝑡)𝑞+𝑞𝜚𝑖(𝑡)1𝑞𝛾𝑝𝑖(𝑡)+𝑐𝑞𝜆𝑝𝑖(𝑡)𝑞1/𝑞×𝜁𝑖𝑖𝛿(𝑡)𝑖1(𝑡)+𝛿𝑖2(𝑡)𝑞1𝜉𝑖(𝑡)𝑞1+𝑐𝑞𝜚𝑖(𝑡)𝑞1𝑞𝛾𝑝𝑖(𝑡)+𝑐𝑞𝜆𝑝𝑖(𝑡)𝑞𝜁𝑖𝑖(𝑡)𝑞1/𝑞+𝑘𝑗=1𝜚𝑖(𝑡)𝜈𝑖𝑗(1𝑡)1+𝑛𝑡𝑖𝑗(𝑥𝑡)𝑛𝑖(𝑡)𝑥𝑖𝑛1(+𝑡)𝑖1𝑗=1𝜏𝑖(𝑡)𝑞1𝑟𝑖(𝑡)𝑚𝑖𝜚(𝑡)𝑖(𝑡)𝜁𝑖𝑗(𝑡)1𝑞𝛾𝑝𝑗(𝑡)+𝑐𝑞𝜆𝑝𝑗(𝑡)𝑞1/𝑞𝑥𝑛𝑗(𝑡)𝑥𝑗𝑛1+(𝑡)𝑘𝑗=𝑖+1𝜏𝑖(𝑡)𝑞1𝑟𝑖(𝑡)𝑚𝑖𝜚(𝑡)𝑖(𝑡)𝜁𝑖𝑗(𝑡)1𝑞𝛾𝑝𝑗(𝑡)+𝑐𝑞𝜆𝑝𝑗(𝑡)𝑞1/𝑞𝑥𝑛𝑗(𝑡)𝑥𝑗𝑛1=(𝑡)1+𝑞𝜖1(𝑡)𝜉1(𝑡)𝑞𝑞𝜇1(𝑡)+𝑐𝑞𝜉1(𝑡)𝑞1/𝑞+𝜆1(𝑡)𝜆𝑠11(𝑡)1+𝑛+𝜏1(𝑡)𝑞1𝑟1(𝑡)𝑚1×𝛿(𝑡)11(𝑡)+𝛿12(𝑡)𝑞𝜉1(𝑡)𝑞+𝑞𝜚1(𝑡)1𝑞𝛾𝑝1(𝑡)+𝑐𝑞𝜆𝑝1(𝑡)𝑞1/𝑞𝜁11𝛿(𝑡)11(𝑡)+𝛿12(𝑡)𝑞1𝜉1(𝑡)𝑞1+𝑐𝑞𝜚1(𝑡)𝑞1𝑞𝛾𝑝1(𝑡)+𝑐𝑞𝜆𝑝1(𝑡)𝑞𝜁11(𝑡)𝑞1/𝑞+𝑘𝑗=1𝜚1(𝑡)𝜈1𝑗1(𝑡)1+𝑛𝑡1𝑗+(𝑡)𝑘𝑗=2𝜏𝑗(𝑡)𝑞1𝑟𝑗(𝑡)𝑚𝑗(𝜚𝑡)𝑗(𝑡)𝜁𝑗1(𝑡)1𝑞𝛾𝑝1(𝑡)+𝑐𝑞𝜆𝑝1(𝑡)𝑞1/𝑞𝑥𝑛1(𝑡)𝑥1𝑛1+(𝑡)1+𝑞𝜖2(𝑡)𝜉2(𝑡)𝑞𝑞𝜇2(𝑡)+𝑐𝑞𝜉2(𝑡)𝑞1/𝑞+𝜆2(𝑡)𝜆𝑠2(1𝑡)1+𝑛+𝜏2(𝑡)𝑞1𝑟2(𝑡)𝑚2×𝛿(𝑡)21(𝑡)+𝛿22(𝑡)𝑞𝜉2(𝑡)𝑞+𝑞𝜚2(𝑡)1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞1/𝑞𝜁22𝛿(𝑡)21(𝑡)+𝛿22(𝑡)𝑞1𝜉2(𝑡)𝑞1+𝑐𝑞𝜚2(𝑡)𝑞1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞𝜁22(𝑡)𝑞1/𝑞+𝑘𝑗=1𝜚2(𝑡)𝜈2𝑗1(𝑡)1+𝑛𝑡2𝑗+𝜏(𝑡)1(𝑡)𝑞1𝑟1(𝑡)𝑚1(𝜚𝑡)1(𝑡)𝜁12(𝑡)1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞1/𝑞+𝑘𝑗=3𝜏𝑗(𝑡)𝑞1𝑟𝑗(𝑡)𝑚𝑗𝜚(𝑡)𝑗(𝑡)𝜁𝑗2(𝑡)1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞1/𝑞𝑥𝑛2(𝑡)𝑥2𝑛1(𝑡)++1+𝑞𝜖𝑘(𝑡)𝜉𝑘(𝑡)𝑞𝑞𝜇𝑘(𝑡)+𝑐𝑞𝜉𝑘(𝑡)𝑞1/𝑞+𝜆𝑘(𝑡)𝜆𝑠𝑘1(𝑡)1+𝑛+𝜏𝑘(𝑡)𝑞1𝑟𝑘(𝑡)𝑚𝑘×𝛿(𝑡)𝑘1(𝑡)+𝛿𝑘2(𝑡)𝑞𝜉𝑘(𝑡)𝑞+𝑞𝜚𝑘(𝑡)1𝑞𝛾𝑝𝑘(𝑡)+𝑐𝑞𝜆𝑝𝑘(𝑡)𝑞1/𝑞𝜁𝑘𝑘(𝛿𝑡)𝑘1(𝑡)+𝛿𝑘2(𝑡)𝑞1𝜉𝑘(𝑡)𝑞1+𝑐𝑞𝜚𝑘(𝑡)𝑞1𝑞𝛾𝑝𝑘(𝑡)+𝑐𝑞𝜆𝑝𝑘(𝑡)𝑞𝜁𝑘𝑘(𝑡)𝑞1/𝑞+𝑘𝑗=1𝜚𝑘(𝑡)𝜈𝑘𝑗1(𝑡)1+𝑛𝑡𝑘𝑗+(𝑡)𝑘1𝑗=1𝜏𝑗(𝑡)𝑞1𝑟𝑗(𝑡)𝑚𝑗𝜚(𝑡)𝑗(𝑡)𝜁𝑗𝑘(𝑡)1𝑞𝛾𝑝𝑘(𝑡)+𝑐𝑞𝜆𝑝𝑘(𝑡)𝑞1/𝑞𝑥𝑛𝑘(𝑡)𝑥𝑘𝑛1(𝑡)𝜃𝑛(𝑡)𝑘𝑖=1𝑥𝑛𝑖(𝑡)𝑥𝑖𝑛1,(𝑡)(4.20) where𝜃𝑛(𝑡)=max1+𝑞𝜖1(𝑡)𝜉1(𝑡)𝑞𝑞𝜇1(𝑡)+𝑐𝑞𝜉1(𝑡)𝑞1/𝑞+𝜆1(𝑡)𝜆𝑠11(𝑡)1+𝑛+𝜏1(𝑡)𝑞1𝑟1(𝑡)𝑚1(×𝛿𝑡)11(𝑡)+𝛿12(𝑡)𝑞𝜉1(𝑡)𝑞+𝑞𝜚1(𝑡)1𝑞𝛾𝑝1(𝑡)+𝑐𝑞𝜆𝑝1(𝑡)𝑞1/𝑞𝜁11𝛿(𝑡)11(𝑡)+𝛿12(𝑡)𝑞1𝜉1(𝑡)𝑞1+𝑐𝑞𝜚1(𝑡)𝑞1𝑞𝛾𝑝1(𝑡)+𝑐𝑞𝜆𝑝1(𝑡)𝑞𝜁11(𝑡)𝑞1/𝑞+𝑘𝑗=1𝜚1(𝑡)𝜈1𝑗1(𝑡)1+𝑛𝑡1𝑗+(𝑡)𝑘𝑗=2𝜏𝑗(𝑡)𝑞1𝑟𝑗(𝑡)𝑚𝑗𝜚(𝑡)𝑗(𝑡)𝜁𝑗1(𝑡)1𝑞𝛾𝑝1(𝑡)+𝑐𝑞𝜆𝑝1(𝑡)𝑞1/𝑞,1+𝑞𝜖2(𝑡)𝜉2(𝑡)𝑞𝑞𝜇2(𝑡)+𝑐𝑞𝜉2(𝑡)𝑞1/𝑞+𝜆2(𝑡)𝜆𝑠21(𝑡)1+𝑛+𝜏2(𝑡)𝑞1𝑟2(𝑡)𝑚2×𝛿(𝑡)21(𝑡)+𝛿22(𝑡)𝑞𝜉2(𝑡)𝑞+𝑞𝜚2(𝑡)1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞1/𝑞𝜁22(𝛿𝑡)21(𝑡)+𝛿22(𝑡)𝑞1𝜉2(𝑡)𝑞1+𝑐𝑞𝜚2(𝑡)𝑞1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞𝜁22(𝑡)𝑞1/𝑞+𝑘𝑗=1𝜚2(𝑡)𝜈2𝑗1(𝑡)1+𝑛𝑡2𝑗+𝜏(𝑡)1(𝑡)𝑞1𝑟1(𝑡)𝑚1𝜚(𝑡)1(𝑡)𝜁12(𝑡)1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞1/𝑞+𝑘𝑗=3𝜏𝑗(𝑡)𝑞1𝑟𝑗(𝑡)𝑚𝑗𝜚(𝑡)𝑗(𝑡)𝜁𝑗2(𝑡)1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞1/𝑞,,1+𝑞𝜖𝑘(𝑡)𝜉𝑘(𝑡)𝑞𝑞𝜇𝑘(𝑡)+𝑐𝑞𝜉𝑘(𝑡)𝑞1/𝑞+𝜆𝑘(𝑡)𝜆𝑠𝑘1(𝑡)1+𝑛+𝜏𝑘(𝑡)𝑞1𝑟𝑘(𝑡)𝑚𝑘×𝛿(𝑡)𝑘1(𝑡)+𝛿𝑘2(𝑡)𝑞𝜉𝑘(𝑡)𝑞+𝑞𝜚𝑘(𝑡)1𝑞𝛾𝑝𝑘(𝑡)+𝑐𝑞𝜆𝑝𝑘(𝑡)𝑞1/𝑞𝜁𝑘𝑘𝛿(𝑡)𝑘1(𝑡)+𝛿𝑘2(𝑡)𝑞1𝜉𝑘(𝑡)𝑞1+𝑐𝑞𝜚𝑘(𝑡)𝑞1𝑞𝛾𝑝𝑘(𝑡)+𝑐𝑞𝜆𝑝𝑘(𝑡)𝑞𝜁𝑘𝑘(𝑡)𝑞1/𝑞+𝑘𝑗=1𝜚𝑘(𝑡)𝜈𝑘𝑗1(𝑡)1+𝑛𝑡𝑘𝑗+(𝑡)𝑘1𝑗=1𝜏𝑗(𝑡)𝑞1𝑟𝑗(𝑡)𝑚𝑗𝜚(𝑡)𝑗(𝑡)𝜁𝑗𝑘(𝑡)1𝑞𝛾𝑝𝑘(𝑡)+𝑐𝑞𝜆𝑝𝑘(𝑡)𝑞1/𝑞.(4.21) Let =𝜃(𝑡)max1+𝑞𝜖1(𝑡)𝜉1(𝑡)𝑞𝑞𝜇1(𝑡)+𝑐𝑞𝜉1(𝑡)𝑞1/𝑞+𝜆1(𝑡)𝜆𝑠1𝜏(𝑡)+1(𝑡)𝑞1𝑟1(𝑡)𝑚1(×𝛿𝑡)11(𝑡)+𝛿12(𝑡)𝑞𝜉1(𝑡)𝑞+𝑞𝜚1(𝑡)1𝑞𝛾𝑝1(𝑡)+𝑐𝑞𝜆𝑝1(𝑡)𝑞1/𝑞𝜁11𝛿(𝑡)11(𝑡)+𝛿12(𝑡)𝑞1𝜉1(𝑡)𝑞1+𝑐𝑞𝜚1(𝑡)𝑞1𝑞𝛾𝑝1(𝑡)+𝑐𝑞𝜆𝑝1(𝑡)𝑞𝜁11(𝑡)𝑞1/𝑞+𝑘𝑗=1𝜚1(𝑡)𝜈1𝑗(𝑡)𝑡1𝑗+(𝑡)𝑘𝑗=2𝜏𝑗(𝑡)𝑞1𝑟𝑗(𝑡)𝑚𝑗𝜚(𝑡)𝑗(𝑡)𝜁𝑗1(𝑡)1𝑞𝛾𝑝1(𝑡)+𝑐𝑞𝜆𝑝1(𝑡)𝑞1/𝑞,1+𝑞𝜖2(𝑡)𝜉2(𝑡)𝑞𝑞𝜇2(𝑡)+𝑐𝑞𝜉2(𝑡)𝑞1/𝑞+𝜆2(𝑡)𝜆𝑠2𝜏(𝑡)+2(𝑡)𝑞1𝑟2(𝑡)𝑚2×𝛿(𝑡)21(𝑡)+𝛿22(𝑡)𝑞𝜉2(𝑡)𝑞+𝑞𝜚2(𝑡)1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞1/𝑞𝜁22(𝛿𝑡)21(𝑡)+𝛿22(𝑡)𝑞1𝜉2(𝑡)𝑞1+𝑐𝑞𝜚2(𝑡)𝑞(1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞𝜁22(𝑡)𝑞1/𝑞+𝑘𝑗=1𝜚2(𝑡)𝜈2𝑗(𝑡)𝑡2𝑗+𝜏(𝑡)1(𝑡)𝑞1𝑟1(𝑡)𝑚1𝜚(𝑡)1(𝑡)𝜁12(𝑡)1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞1/𝑞+𝑘𝑗=3𝜏𝑗(𝑡)𝑞1𝑟𝑗(𝑡)𝑚𝑗𝜚(𝑡)𝑗(𝑡)𝜁𝑗2(𝑡)1𝑞𝛾𝑝2(𝑡)+𝑐𝑞𝜆𝑝2(𝑡)𝑞1/𝑞,,1+𝑞𝜖𝑘(𝑡)𝜉𝑘(𝑡)𝑞𝑞𝜇𝑘(𝑡)+𝑐𝑞𝜉𝑘(𝑡)𝑞1/𝑞+𝜆𝑘(𝑡)𝜆𝑠𝑘𝜏(𝑡)+𝑘(𝑡)𝑞1𝑟𝑘(𝑡)𝑚𝑘×𝛿(𝑡)𝑘1(𝑡)+𝛿𝑘2(𝑡)𝑞𝜉𝑘(𝑡)𝑞+𝑞𝜚𝑘(𝑡)1𝑞𝛾𝑝k(𝑡)+𝑐𝑞𝜆𝑝k(𝑡)𝑞1/𝑞𝜁𝑘𝑘𝛿(𝑡)𝑘1(𝑡)+𝛿𝑘2(𝑡)𝑞1𝜉𝑘(𝑡)𝑞1+𝑐𝑞𝜚𝑘(𝑡)𝑞1𝑞𝛾𝑝𝑘(𝑡)+𝑐𝑞𝜆𝑝𝑘(𝑡)𝑞𝜁𝑘𝑘(𝑡)𝑞1/𝑞+𝑘𝑗=1𝜚𝑘(𝑡)𝜈𝑘𝑗(𝑡)𝑡𝑘𝑗+(𝑡)𝑘1𝑗=1𝜏𝑗(𝑡)𝑞1𝑟𝑗(𝑡)𝑚𝑗𝜚(𝑡)𝑗(𝑡)𝜁𝑗𝑘(𝑡)1𝑞𝛾𝑝𝑘(𝑡)+𝑐𝑞𝜆𝑝𝑘(𝑡)𝑞1/𝑞.(4.22) Then 𝜃𝑛(𝑡)𝜃(𝑡), for all 𝑡Ω.
Define on 𝐸=𝑘𝑖=1𝐸𝑖 by 𝑧1(𝑡),𝑧2(𝑡),,𝑧𝑘(𝑡)=𝑧1(𝑡)+𝑧2(𝑡)++𝑧𝑘𝑧(𝑡),1(𝑡),𝑧2(𝑡),,𝑧𝑘(𝑡)𝐸.(4.23) It is easy to see that (𝐸,) is a Banach space.
Define 𝑧𝑛+1(𝑡)=(𝑥1𝑛+1(𝑡),𝑥2𝑛+1(𝑡),,𝑥𝑘𝑛+1(𝑡)). Then, we have 𝑧𝑛+1(𝑡)𝑧𝑛(𝑡)=𝑥1𝑛+1(𝑡)𝑥𝑛1(𝑡)+𝑥2𝑛+1(𝑡)𝑥𝑛2(𝑡)++𝑥𝑘𝑛+1(𝑡)𝑥𝑛𝑘(𝑡).(4.24) From the condition (4.11), we know that for all 𝑡Ω, 0<𝜃(𝑡)<1, and hence there exists an 𝑛0>0 and 𝜃0(𝑡)(0,1) such that 𝜃𝑛(𝑡)𝜃0(𝑡), for all 𝑛𝑛0. Therefore, by (4.20) and (4.24), we have 𝑧𝑛+1(𝑡)𝑧𝑛(𝑡)𝜃0𝑧(𝑡)𝑛(𝑡)𝑧𝑛1(𝑡),𝑛𝑛0.(4.25) It follows from (4.25) that 𝑧𝑛+1(𝑡)𝑧𝑛(𝑡)𝜃0(𝑡)𝑛𝑛0𝑧𝑛0+1(𝑡)𝑧𝑛0(𝑡).(4.26) Hence, for any 𝑚𝑛𝑛0, it follows that 𝑥𝑚1(𝑡)𝑥𝑛1(𝑡)𝑧𝑚(𝑡)𝑧𝑛(𝑡)𝑚1𝑖=𝑛𝑧𝑖+1(𝑡)𝑧𝑖(𝑡)𝑚1𝑖=𝑛𝜃0(𝑡)𝑖𝑛0𝑧𝑛0+1(𝑡)𝑧𝑛0(𝑡).(4.27) Since 0<𝜃0(𝑡)<1, for all 𝑡Ω, it follows from (4.27) that 𝑥𝑚1(𝑡)𝑥𝑛1(𝑡)0 as 𝑛, and hence {𝑥𝑛1(𝑡)} is a Cauchy sequence in 𝐸1. By the same argument, we also have that {𝑥𝑛𝑖(𝑡)} is a Cauchy sequence in 𝐸𝑖(𝑖=2,3,,𝑘). Thus there exist measurable mappings 𝑥1Ω𝐸1, 𝑥2Ω𝐸2,,𝑥𝑘Ω𝐸𝑘 such that for all 𝑡Ω, 𝑥𝑛1(𝑡)𝑥1(𝑡), 𝑥𝑛2(𝑡)𝑥2(𝑡),,𝑥𝑛𝑘(𝑡)𝑥𝑘(𝑡) as 𝑛.
Now we prove that 𝑢𝑛1𝑖(𝑡)𝑢1𝑖𝑇(𝑡)1𝑖t(𝑥1), 𝑢𝑛2𝑖(𝑡)𝑢2𝑖𝑇(𝑡)2𝑖t(𝑥2),,𝑢𝑛𝑘𝑖(𝑡)𝑢𝑘𝑖𝑇(𝑡)𝑘𝑖t(𝑥𝑘), 𝑣𝑛𝑖(𝑡)𝑣𝑖𝑆(𝑡)𝑖t(𝑥𝑖)(𝑖=1,2,,𝑘). In fact, it follows from the Lipschitz continuity of 𝑇1𝑖, 𝑇2𝑖𝑇,,𝑘𝑖, 𝑆𝑖 and Algorithm 4.2 that for 𝑖=1,2,,𝑘, 𝑢𝑛1𝑖(𝑡)𝑢𝑛11𝑖1(𝑡)1+𝑛𝑡1𝑖𝑥(𝑡)𝑛1(𝑡)𝑥1𝑛1,𝑢(𝑡)𝑛2𝑖(𝑡)𝑢𝑛12𝑖1(𝑡)1+𝑛𝑡2𝑖𝑥(𝑡)𝑛2(𝑡)𝑥2𝑛1,𝑢(𝑡)𝑛𝑘𝑖(𝑡)𝑢𝑛1𝑘𝑖1(𝑡)1+𝑛𝑡𝑘𝑖𝑥(𝑡)𝑛𝑘(𝑡)𝑥𝑘𝑛1,𝑣(𝑡)𝑛𝑖(𝑡)𝑣𝑖𝑛11(𝑡)1+𝑛𝜆𝑠𝑖𝑥(𝑡)𝑛𝑖(𝑡)𝑥𝑖𝑛1.(𝑡)(4.28) From (4.28), we know that {𝑢𝑛1𝑖(𝑡)}, {𝑢𝑛2𝑖(𝑡)},,{𝑢𝑛𝑘𝑖(𝑡)}, {𝑣𝑛𝑖(𝑡)}(𝑖=1,2,,𝑘) are also Cauchy sequences. Therefore, there exist 𝑢1𝑖(𝑡)𝐸𝑖, 𝑢2𝑖(𝑡)𝐸𝑖,,𝑢𝑘𝑖(𝑡)𝐸𝑖, 𝑣𝑖(𝑡)𝐸𝑖(𝑖=1,2,,𝑘) such that 𝑢𝑛1𝑖(𝑡)𝑢1𝑖(𝑡), 𝑢𝑛2𝑖(𝑡)𝑢2𝑖(𝑡),,𝑢𝑛𝑘𝑖(𝑡)𝑢𝑘𝑖(𝑡) as 𝑛. Further, for 𝑖=1,2,,𝑘, 𝑑𝑢1𝑖𝑇(𝑡),1𝑖𝑡𝑥1𝑢1𝑖(𝑡)𝑢𝑛1𝑖𝑢(𝑡)+𝑑𝑛1𝑖𝑇(𝑡),1𝑖𝑡𝑥1𝑢1𝑖(𝑡)𝑢𝑛1𝑖+𝐻𝑇(𝑡)1𝑖𝑡𝑥𝑛1,𝑇1𝑖𝑡𝑥1𝑢1𝑖(𝑡)𝑢𝑛1𝑖(𝑡)+𝑡1𝑖(𝑡)𝑥𝑛1(𝑡)𝑥1(𝑡)0,𝑡Ω.(4.29) Since 𝑇1𝑖t(𝑥1) is closed, we have 𝑢1𝑖𝑇(𝑡)1𝑖𝑡(𝑥1)(𝑖=1,2,,𝑘). Similarly, 𝑢2𝑖𝑇(𝑡)2𝑖𝑡(𝑥2),,𝑢𝑘𝑖𝑇(𝑡)𝑘𝑖𝑡(𝑥𝑘), 𝑣𝑖𝑆(𝑡)𝑖𝑡(𝑥𝑖)(𝑖=1,2,,𝑘). This completes the proof.

Now we show the existence of solutions for problem (4.4).

Lemma 4.4. Problem (4.4) is equivalent to find measurable mappings 𝑥𝑖,𝑢1𝑖,𝑢2𝑖,,𝑢𝑘𝑖Ω𝑖 such that for all 𝑡Ω and 𝑖=1,2,,𝑘, 𝑥𝑖(𝑡)𝑖, 𝑇1𝑖1𝑡,𝑥(𝑡)(𝑢1𝑖(𝑡))𝑎1(𝑥1(𝑡)), 𝑇2𝑖2𝑡,𝑥(𝑡)(𝑢2𝑖(𝑡))𝑎2(𝑥2(𝑡)),,𝑇𝑘𝑖𝑘𝑡,𝑥(𝑡)(𝑢𝑘𝑖(𝑡))𝑎𝑘(𝑥𝑘(𝑡)) such that 𝑓𝑖𝑡𝑥𝑖=𝐽𝜑𝑖𝑡𝜌𝑖(𝑡)𝑓𝑖𝑡𝑥𝑖𝜌𝑖𝐹(𝑡)𝑖𝑡𝑥1𝑝1𝑡𝑥1,𝑥2𝑝2𝑡𝑥2,,𝑥𝑘𝑝𝑘𝑡𝑥𝑘+𝑁𝑖𝑡𝑢𝑖1,𝑢𝑖2,,𝑢𝑖𝑘,(4.30) where 𝜌𝑖Ω(0,) is a measurable function and 𝐽𝜑𝑖𝑡𝜌𝑖(𝑡)=(𝐼𝑡+𝜌𝑖(𝑡)𝜕𝜑𝑖𝑡)1.
If for 𝑖=1,2,,𝑘, 𝐸𝑖=𝑖 is a Hilbert space and 𝑀𝑖𝑡(,𝑣𝑖)=𝜕𝜑𝑖𝑡(), for all 𝑡Ω, 𝑥𝑖(𝑡)𝑖 and 𝑣𝑖𝑆(𝑡)𝑖t(𝑥𝑖), then Algorithm 4.2 reduces to Algorithm 4.5.

Algorithm 4.5. For any given measurable mapping 𝑥0𝑖Ω𝑖(𝑖=1,2,,𝑘), compute the following random iterative sequences {𝑥𝑛𝑖(𝑡)}, {𝑢𝑛1𝑖(𝑡)}, {𝑢𝑛2𝑖(𝑡)}, …, {𝑢𝑛𝑘𝑖(𝑡)}(𝑖=1,2,,𝑘) for solving problem (4.4) as follows: 𝑥𝑖𝑛+1(𝑡)=𝑥𝑛𝑖(𝑡)𝑓𝑖𝑡𝑥𝑛𝑖+𝐽𝜑𝑖𝑡𝜌𝑖(𝑡)𝑓𝑖𝑡𝑥𝑛𝑖𝜌𝑖𝐹(𝑡)𝑖𝑡𝑥𝑛1𝑝1𝑡𝑥𝑛1,𝑥𝑛2𝑝2𝑡𝑥𝑛2,,𝑥𝑛𝑘𝑝𝑘𝑡𝑥𝑛𝑘+𝑁𝑖𝑡𝑢𝑛𝑖1,𝑢𝑛𝑖2,,𝑢𝑛𝑖𝑘,𝑢𝑛1𝑖𝑇(𝑡)1𝑖𝑡𝑥𝑛1,𝑢𝑛2𝑖𝑇(𝑡)2𝑖𝑡𝑥𝑛2,,𝑢𝑛𝑘𝑖𝑇(𝑡)𝑘𝑖𝑡𝑥𝑛𝑘,𝑢𝑛1𝑖(𝑡)𝑢𝑛+11𝑖1(𝑡)1+𝐻𝑇𝑛+11𝑖𝑡𝑥𝑛1,𝑇1𝑖𝑡𝑥1𝑛+1,𝑢𝑛2𝑖(𝑡)𝑢𝑛+12𝑖1(𝑡)1+𝐻𝑇𝑛+12𝑖𝑡𝑥𝑛2,𝑇2𝑖𝑡𝑥2𝑛+1,𝑢𝑛𝑘𝑖(𝑡)𝑢𝑛+1𝑘𝑖1(𝑡)1+𝐻𝑇𝑛+1𝑘𝑖𝑡𝑥𝑛𝑘,𝑇𝑘𝑖𝑡𝑥𝑘𝑛+1,(4.31) for any 𝑡Ω, 𝑖=1,2,,𝑘, 𝑛=0,1,2,.

From Theorem 4.3, we have the following Theorem.

Theorem 4.6. For 𝑖=1,2,,𝑘, let 𝑖 be a Hilbert space, 𝑓𝑖Ω×𝑖𝑖 be (𝜖𝑖,𝜇𝑖)-relaxed cocoercive and 𝜉𝑖-Lipschitz continuous, and 𝑝𝑖Ω×𝑖𝑖 be 𝛾𝑝𝑖-strongly accretive and 𝜆𝑝𝑖-Lipschitz continuous. Let 𝐹𝑖Ω×𝑘𝑗=1𝑗𝑖 be 𝜁𝑖𝑗-Lipschitz continuous in the (𝑗+1)th argument for 𝑗=1,2,,𝑘, and 𝑁𝑖Ω×𝑘𝑗=1𝑗𝑖 be 𝜈𝑖𝑗-Lipschitz continuous in the (𝑗+1)th argument for 𝑗=1,2,,𝑘. Let 𝑇1𝑖Ω×1𝖥(𝑖), 𝑇2𝑖Ω×2𝖥(𝑖),,𝑇𝑘𝑖Ω×𝑘𝖥(𝑖) be random fuzzy mappings satisfying the condition (C); 𝑇1𝑖Ω×1CB(𝑖), 𝑇2𝑖Ω×2CB(𝑖𝑇),,𝑘𝑖Ω×𝑘CB(𝑖) be random multivalued mappings induced by 𝑇1𝑖,𝑇2𝑖,,𝑇𝑘𝑖, respectively. Suppose that 𝑇1𝑖, 𝑇2𝑖𝑇,,𝑘𝑖 are 𝐻-continuous with constants 𝑡1𝑖, 𝑡2𝑖,,𝑡𝑘𝑖, respectively. If there exists a constant 𝜌𝑖(𝑡)>0(𝑖=1,2,,𝑘) such that 0<1+2𝜖1(𝑡)𝜉1(𝑡)22𝜇1(𝑡)+𝜉1(𝑡)21/2+𝜉1(𝑡)2+2𝜌1(𝑡)12𝛾𝑝1(𝑡)+𝜆𝑝1(𝑡)21/2𝜁11(𝑡)𝜉1(𝑡)+𝜌1(𝑡)212𝛾𝑝1(𝑡)+𝜆𝑝1(𝑡)2𝜁11(𝑡)21/2+𝑘𝑗=1𝜌1(𝑡)𝜈1𝑗(𝑡)𝑡1𝑗(𝑡)+𝑘𝑗=2𝜌𝑗(𝑡)𝜁𝑗1(𝑡)12𝛾𝑝1(𝑡)+𝜆𝑝1(𝑡)21/2<1,0<1+2𝜖2(𝑡)𝜉2(𝑡)22𝜇2(𝑡)+𝜉2(𝑡)21/2+𝜉2(𝑡)2+2𝜌2(𝑡)12𝛾𝑝2(𝑡)+𝜆𝑝2(𝑡)21/2𝜁22(𝑡)𝜉2(𝑡)+𝜌2(𝑡)212𝛾𝑝2(𝑡)+𝜆𝑝2(𝑡)2𝜁22(𝑡)21/2+𝑘𝑗=1𝜌2(𝑡)𝜈2𝑗(𝑡)𝑡2𝑗(𝑡)+𝜌1(𝑡)𝜁12(𝑡)12𝛾𝑝2(𝑡)+𝜆𝑝2(𝑡)21/2+𝑘𝑗=3𝜌𝑗(𝑡)𝜁𝑗2(𝑡)12𝛾𝑝2(𝑡)+𝜆𝑝2(𝑡)21/2<1,,0<1+2𝜖𝑘(𝑡)𝜉𝑘(𝑡)22𝜇𝑘(𝑡)+𝜉𝑘(𝑡)21/2+𝜉𝑘(𝑡)2+2𝜌𝑘(𝑡)12𝛾𝑝𝑘(𝑡)+𝜆𝑝𝑘(𝑡)21/2𝜁𝑘𝑘(𝑡)𝜉𝑘(𝑡)+𝜌𝑘(𝑡)212𝛾𝑝𝑘(𝑡)+𝜆𝑝𝑘(𝑡)2𝜁𝑘𝑘(𝑡)21/2+𝑘𝑗=1𝜌𝑘(𝑡)𝜈𝑘𝑗(𝑡)𝑡𝑘𝑗+(𝑡)𝑘1𝑗=1𝜌𝑗(𝑡)𝜁𝑗𝑘(𝑡)12𝛾𝑝𝑘(𝑡)+𝜆𝑝𝑘(𝑡)21/2<1.(4.32) Then there exist measurable mappings 𝑥𝑖, 𝑢1𝑖,𝑢2𝑖,,𝑢𝑘𝑖Ω𝑖 such that (4.4) holds. Moreover, for all 𝑡Ω, 𝑥𝑛𝑖(𝑡)𝑥𝑖(𝑡), 𝑢𝑛1𝑖(𝑡)𝑢1𝑖(𝑡), 𝑢𝑛2𝑖(𝑡)𝑢2𝑖(𝑡),,𝑢𝑛𝑘𝑖(𝑡)𝑢𝑘𝑖(𝑡), where {𝑥𝑛𝑖(𝑡)}, {𝑢𝑛1𝑖(𝑡)},,{𝑢𝑛𝑘𝑖(𝑡)} are random sequences obtained by Algorithm 4.5.