Table of Contents
ISRN Optics
Volume 2012, Article ID 732067, 5 pages
http://dx.doi.org/10.5402/2012/732067
Research Article

Photoluminescence from SWCNT/Cu Hybrid Nanostructure Synthesized by a Soft Chemical Route

Nanoscience Laboratory, Department of Physics, National Institute of Technology Durgapur, West Bengal, Durgapur 713209, India

Received 27 November 2011; Accepted 26 December 2011

Academic Editors: D. Y. Kim, J. McGinty, G. Montemezzani, and D. Poitras

Copyright © 2012 Rima Paul and Apurba Krishna Mitra. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Springer, Berlin, Germany, 2001.
  2. M. S. Dresselhaus and H. Dai, “Carbon nanotubes: continued innovations and challenges,” MRS Bulletin, vol. 29, no. 4, pp. 237–243, 2004. View at Google Scholar · View at Scopus
  3. W. A. De Heer, “Nanotubes and the pursuit of applications,” MRS Bulletin, vol. 29, no. 4, pp. 281–239, 2004. View at Google Scholar · View at Scopus
  4. R. W. Siegel, “Synthesis and properties of nanophase materials,” Materials Science and Engineering A, vol. 168, no. 2, pp. 189–197, 1993. View at Google Scholar · View at Scopus
  5. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, no. 5251, pp. 933–937, 1996. View at Google Scholar · View at Scopus
  6. G. G. Wildgoose, C. E. Banks, and R. G. Compton, “Metal nanoparticles and related materials supported on Carbon nanotubes: methods and applications,” Small, vol. 2, no. 2, pp. 182–193, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. A. Correa-Duarte and L. M. Liz-Marzán, “Carbon nanotubes as templates for one-dimensional nanoparticle assemblies,” Journal of Materials Chemistry, vol. 16, no. 1, pp. 22–25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D. M. Guldi, and M. Prato, “Decorating carbon nanotubes with metal or semiconductor nanoparticles,” Journal of Materials Chemistry, vol. 17, no. 26, pp. 2679–2694, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Penza, R. Rossi, M. Alvisi, G. Cassano, and E. Serra, “Functional characterization of carbon nanotube networked films functionalized with tuned loading of Au nanoclusters for gas sensing applications,” Sensors and Actuators B, vol. 140, no. 1, pp. 176–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Liu, X. Lin, J. Y. Lee, W. Zhang, M. Han, and L. M. Gan, “Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells,” Langmuir, vol. 18, no. 10, pp. 4054–4060, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Li, C. Liang, W. Zhou et al., “Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells,” Journal of Physical Chemistry B, vol. 107, no. 26, pp. 6292–6299, 2003. View at Google Scholar · View at Scopus
  12. B. J. Landi, S. L. Castro, H. J. Ruf, C. M. Evans, S. G. Bailey, and R. P. Raffaelle, “CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells,” Solar Energy Materials and Solar Cells, vol. 87, no. 1–4, pp. 733–746, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Robel, B. Bunker, and P. V. Kamat, “SWCNT-CdS nanocomposite as light harvesting assembly: photo induced charge transfer interactions,” Advanced Materials, vol. 17, no. 20, pp. 2458–2463, 2005. View at Google Scholar
  14. Y. Lin, K. A. Watson, S. Ghose et al., “Direct mechanochemical formation of metal nanoparticles on carbon nanotubes,” Journal of Physical Chemistry C, vol. 113, no. 33, pp. 14858–14862, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Lin, K. A. Watson, M. J. Fallbach et al., “Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes,” ACS Nano, vol. 3, no. 4, pp. 871–884, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. K. R. Reddy, B. C. Sin, C. H. Yoo et al., “A new one-step synthesis method for coating multi-walled carbon nanotubes with cuprous oxide nanoparticles,” Scripta Materialia, vol. 58, no. 11, pp. 1010–1013, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. Q. Zhang, W. Z. Qian, H. Yu, F. Wei, and Q. Wen, “Synthesis of carbon nanotubes with totally hollow channels and/or with totally copper filled nanowires,” Applied Physics A, vol. 86, no. 2, pp. 265–269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Chu, Q. Wu, C. Jia et al., “Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications,” Composites Science and Technology, vol. 70, no. 2, pp. 298–304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Jiang, A. Eitan, L. S. Schadler et al., “Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes,” Nano Letters, vol. 3, no. 3, pp. 275–277, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Paul, A. Maity, A. Mitra, P. Kumbhakar, and A. K. Mitra, “Synthesis and study of optical and electrical characteristics of a hybrid structure of single wall carbon nanotubes and silver nanoparticles,” Journal of Nanoparticle Research, vol. 13, no. 11, pp. 5749–5757, 2011. View at Publisher · View at Google Scholar
  21. Y. Shi, R. Yang, and P. K. Yuet, “Easy decoration of carbon nanotubes with well dispersed gold nanoparticles and the use of the material as an electrocatalyst,” Carbon, vol. 47, no. 4, pp. 1146–1151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, and S. Roth, “Separation of carbon nanotubes by size exclusion chromatography,” Chemical Communications, no. 3, pp. 435–436, 1998. View at Google Scholar
  23. S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, and P. C. Eklund, “Purification of single-wall carbon nanotubes by microfiltration,” Journal of Physical Chemistry B, vol. 101, no. 44, pp. 8839–8842, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Graupner, “Raman spectroscopy of covalently functionalized single-wall carbon nanotubes,” Journal of Raman Spectroscopy, vol. 38, no. 6, pp. 673–683, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. A. M. Rao, P. C. Eklund, S. Bandow, A. Thess, and R. E. Smalley, “Evidence for charge transfer in doped carbon nanotube bundles from raman scattering,” Nature, vol. 388, no. 6639, pp. 257–259, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. G. U. Sumanasekera, J. L. Allen, S. L. Fang, A. L. Loper, A. M. Rao, and P. C. Eklund, “Electrochemical oxidation of single wall carbon nanotube bundles in sulfuric acid,” Journal of Physical Chemistry B, vol. 103, no. 21, pp. 4292–4297, 1999. View at Google Scholar · View at Scopus
  27. M. Scarselli, P. Castrucci, L. Camilli et al., “Influence of Cu nanoparticle size on the photo-electrochemical response from Cu-multiwall carbon nanotube composites,” Nanotechnology, vol. 22, no. 3, article 035701, 9 pages, 2011. View at Publisher · View at Google Scholar · View at PubMed