Table of Contents
ISRN Endocrinology
Volume 2012, Article ID 736860, 12 pages
http://dx.doi.org/10.5402/2012/736860
Research Article

Downregulation in GATA4 and Downstream Structural and Contractile Genes in the db/db Mouse Heart

1Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, Midwestern University, 19555 North 59th Avenue, Glendale, AZ, 85308, USA
2Laboratory of Cardiovascular Biochemistry, Centre Hospitalier de L’Université de Montréal-Hôtel-Dieu, 3850 St-Urbaiw Street, Montreal, QC, Canada H2W 1T8

Received 13 December 2011; Accepted 2 January 2012

Academic Editors: C. Fürnsinn, V. Saengsirisuwan, and Y. Tajiri

Copyright © 2012 Tom L. Broderick et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. B. Kannel and D. L. McGee, “Diabetes and cardiovascular risk factors: the Framingham study,” Circulation, vol. 59, no. 1, pp. 8–13, 1979. View at Google Scholar · View at Scopus
  2. D. L. Dries, N. K. Sweitzer, M. H. Drazner, L. W. Stevenson, and B. J. Gersh, “Prognostic impact of diabetes mellitus in patients with heart failure according to the etiology of left ventricular systolic dysfunction,” Journal of the American College of Cardiology, vol. 38, no. 2, pp. 421–428, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. B. M. Fisher, G. Gillen, G. B. M. Lindop, H. J. Dargie, and B. M. Frier, “Cardiac function and coronary arteriography in asymptomatic type 1 (insulin-dependent) diabetic patients: evidence for a specific diabetic heart disease,” Diabetologia, vol. 29, no. 10, pp. 706–712, 1986. View at Google Scholar · View at Scopus
  4. R. D. Abbott, R. P. Donahue, W. B. Kannel, and P. W. F. Wilson, “The impact of diabetes on survival following myocardial infarction in men vs women. The Framingham Study,” Journal of the American Medical Association, vol. 260, no. 23, pp. 3456–3460, 1988. View at Google Scholar · View at Scopus
  5. C. Depre, M. E. Young, J. Ying et al., “Streptozotocin-induced changes in cardiac gene expression in the absence of severe contractile dysfunction,” Journal of Molecular and Cellular Cardiology, vol. 32, no. 6, pp. 985–996, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. S. H. Kim, K. W. Park, Y. S. Kim et al., “Effects of acute hyperglycemia on endothelium-dependent vasodilation in patients with diabetes mellitus or impaired glucose metabolism,” Endothelium, vol. 10, no. 2, pp. 65–70, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. S. W. Schaffer, M. S. Mozaffari, M. Artman, and G. L. Wilson, “Basis for myocardial mechanical defects associated with non-insulin-dependent diabetes,” American Journal of Physiology, vol. 256, no. 1, pp. E25–E30, 1989. View at Google Scholar · View at Scopus
  8. W. C. Stanley, G. D. Lopaschuk, and J. G. McCormack, “Regulation of energy substrate metabolism in the diabetic heart,” Cardiovascular Research, vol. 34, no. 1, pp. 25–33, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. J. D. Molkentin, “The zinc finger-containing transcription factors GATA-4, -5, and -6: ubiquitously expressed regulators of tissue-specific gene expression,” Journal of Biological Chemistry, vol. 275, no. 50, pp. 38949–38952, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Pikkarainen, H. Tokola, R. Kerkelä, and H. Ruskoaho, “GATA transcription factors in the developing and adult heart,” Cardiovascular Research, vol. 63, no. 2, pp. 196–207, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Bisping, S. Ikeda, S. W. Kong et al., “Gata4 is required for maintenance of postnatal cardiac function and protection from pressure overload-induced heart failure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 39, pp. 14471–14476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Huang, C. D. Wright, S. Kobayashi et al., “GATA4 is a survival factor in adult cardiac myocytes but is not required for α1A-adrenergic receptor survival signaling,” American Journal of Physiology, vol. 295, no. 2, pp. H699–H707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. Q. Liang, L. J. De Windt, S. A. Witt, T. R. Kimball, B. E. Markham, and J. D. Molkentin, “The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo,” Journal of Biological Chemistry, vol. 276, no. 32, pp. 30245–30253, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. J. Suzuki, H. Nagase, R. M. Day, and D. K. Das, “GATA-4 regulation of myocardial survival in the preconditioned heart,” Journal of Molecular and Cellular Cardiology, vol. 37, no. 6, pp. 1195–1203, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Oka, M. Maillet, A. J. Watt et al., “Cardiac-specific deletion of gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability,” Circulation Research, vol. 98, no. 6, pp. 837–845, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Kobayashi, K. Mao, H. Zheng et al., “Diminished GATA4 protein levels contribute to hyperglycemia-induced cardiomyocyte injury,” Journal of Biological Chemistry, vol. 282, no. 30, pp. 21945–21952, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Zhang, Z. Xu, X. R. He, L. H. Michael, and C. Patterson, “CHIP, a cochaperone/ubiquitin ligase that regulates protein quality control, is required for maximal cardioprotection after myocardial infarction in mice,” American Journal of Physiology, vol. 288, no. 6, pp. H2836–H2842, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Jankowski, F. Hajjar, S. Al Kawas et al., “Rat heart: a site of oxytocin production and action,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 24, pp. 14558–14563, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. E. S. Lee, K. O. Uhm, Y. M. Lee, J. Kwon, S. H. Park, and K. H. Soo, “Oxytocin stimulates glucose uptake in skeletal muscle cells through the calcium-CaMKK-AMPK pathway,” Regulatory Peptides, vol. 151, no. 1–3, pp. 71–74, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Florian, M. Jankowski, and J. Gutkowska, “Oxytocin increases glucose uptake in neonatal rat cardiomyocytes,” Endocrinology, vol. 151, no. 2, pp. 482–491, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Uchida, S. Fuke, and T. Tsukahara, “Upregulations of Gata4 and oxytocin receptor are important in cardiomyocyte differentiation processes of P19CL6 cells,” Journal of Cellular Biochemistry, vol. 100, no. 3, pp. 629–641, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Aasum, A. D. Hafstad, D. L. Severson, and T. S. Larsen, “Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice,” Diabetes, vol. 52, no. 2, pp. 434–441, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. L. A. Barouch, D. Gao, L. Chen et al., “Cardiac myocyte apoptosis is associated with increased DNA damage and decreased survival in murine models of obesity,” Circulation Research, vol. 98, no. 1, pp. 119–124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Gutkowska, T. L. Broderick, D. Bogdan, D. Wang, J. M. Lavoie, and M. Jankowski, “Downregulation of oxytocin and natriuretic peptides in diabetes: possible implications in cardiomyopathy,” Journal of Physiology, vol. 587, no. 19, pp. 4725–4736, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. J. Mercadier, A. M. Lompre, C. Wisnewsky et al., “Myosin isoenzyme changes in several models of rat cardiac hypertrophy,” Circulation Research, vol. 49, pp. 525–532, 1981. View at Google Scholar
  26. S. W. Lee, G. Dai, Z. Hu, X. Wang, J. Du, and W. E. Mitch, “Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase,” Journal of the American Society of Nephrology, vol. 15, no. 6, pp. 1537–1545, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Wang, Z. Hu, J. Hu, J. Du, and W. E. Mitch, “Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling,” Endocrinology, vol. 147, no. 9, pp. 4160–4168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. R. W. Currie and M. Karmazyn, “Improved post-ischemic ventricular recovery in the absence of changes in energy metabolism in working rat hearts following heat-shock,” Journal of Molecular and Cellular Cardiology, vol. 22, no. 6, pp. 631–636, 1990. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Charron, G. Tsimiklis, M. Arcand et al., “Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA,” Genes and Development, vol. 15, no. 20, pp. 2702–2719, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Tokudome, T. Horio, T. Soeki et al., “Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and endothelin-1 signaling pathways,” Endocrinology, vol. 145, no. 5, pp. 2131–2140, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. R. L. Woods, “Cardioprotective functions of atrial natriuretic peptide and B-type natriuretic peptide: a brief review,” Clinical and Experimental Pharmacology and Physiology, vol. 31, no. 11, pp. 791–794, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. A. L. Birkenfeld, P. Budziarek, M. Boschmann et al., “Atrial natriuretic peptide induces postprandial lipid oxidation in humans,” Diabetes, vol. 57, no. 12, pp. 3199–3204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Kälsch, T. Neumann, and R. Erbel, “Less increase of BNP and NT-proBNP levels in obese patient with decompensated heart failure. Interpretation of natriuretic peptides in obesity,” International Journal of Cardiology, vol. 133, no. 1, pp. e22–e24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. A. Taylor, R. H. Christenson, K. Rao, M. Jorge, and S. S. Gottlieb, “B-Type natriuretic peptide and N-terminal pro B-type natriuretic peptide are depressed in obesity despite higher left ventricular end diastolic pressures,” American Heart Journal, vol. 152, no. 6, pp. 1071–1076, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. M. R. Mehra, P. A. Uber, M. H. Park et al., “Obesity and suppressed B-type natriuretic peptide levels in heart failure,” Journal of the American College of Cardiology, vol. 43, no. 9, pp. 1590–1595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Miyashita, H. Itoh, H. Tsujimoto et al., “Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity,” Diabetes, vol. 58, no. 12, pp. 2880–2892, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Boudina and E. D. Abel, “Diabetic cardiomyopathy revisited,” Circulation, vol. 115, no. 25, pp. 3213–3223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Guha, R. Harmancey, and H. Taegtmeyer, “Nonischemic heart failure in diabetes mellitus,” Current Opinion in Cardiology, vol. 23, no. 3, pp. 241–248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. D. L. Allen and L. A. Leinwand, “Postnatal myosin heavy chain isoform expression in normal mice and mice null for IIb or IId myosin heavy chains,” Developmental Biology, vol. 229, no. 2, pp. 383–395, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. W. H. Dillmann, “Hormonal influences on cardiac myosin ATPase activity and myosin isoenzyme distribution,” Molecular and Cellular Endocrinology, vol. 34, no. 3, pp. 169–181, 1984. View at Publisher · View at Google Scholar · View at Scopus
  41. D. P. Fitzsimons, P. W. Bodell, R. E. Herrick, and K. M. Baldwin, “Left ventricular functional capacity in the endurance-trained rodent,” Journal of Applied Physiology, vol. 69, no. 1, pp. 305–312, 1990. View at Google Scholar · View at Scopus
  42. M. Krenz and J. Robbins, “Impact of beta-myosin heavy chain expression on cardiac function during stress,” Journal of the American College of Cardiology, vol. 44, no. 12, pp. 2390–2397, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Giger, A. X. Qin, P. W. Bodell, K. M. Baldwin, and F. Haddad, “Activity of the β-myosin heavy chain antisense promoter responds to diabetes and hypothyroidism,” American Journal of Physiology, vol. 292, no. 6, pp. H3065–H3071, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. D. J. Paulson, M. Gupta, R. Zak, and J. Zhao, “Effects of exercise training and diabetes on cardiac myosin heavy chain composition,” Molecular and Cellular Biochemistry, vol. 117, no. 2, pp. 175–179, 1992. View at Google Scholar · View at Scopus
  45. B. A. Clarke, D. Drujan, M. S. Willis et al., “The E3 ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle,” Cell Metabolism, vol. 6, no. 5, pp. 376–385, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. Liu, W. R. Miers, L. Wei, and E. J. Barrett, “The ubiquitin-proteasome proteolytic pathway in heart vs skeletal muscle: effects of acute diabetes,” Biochemical and Biophysical Research Communications, vol. 276, no. 3, pp. 1255–1260, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. D. L. Coleman and D. L. Burkart, “Plasma corticosterone concentrations in diabetic (db) mice,” Diabetologia, vol. 13, no. 1, pp. 25–26, 1977. View at Google Scholar · View at Scopus
  48. M. Sandri, C. Sandri, A. Gilbert et al., “Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy,” Cell, vol. 117, no. 3, pp. 399–412, 2004. View at Publisher · View at Google Scholar · View at Scopus