Table of Contents
ISRN Soil Science
Volume 2012, Article ID 739051, 7 pages
http://dx.doi.org/10.5402/2012/739051
Research Article

Leaching of Fluoride from Biotite Mica in Soil: Implications for Fluoride in Shallow Groundwater

Department of Geology, Faculty of Science, University of Peradeniya, 20400 Peradeniya, Sri Lanka

Received 15 December 2011; Accepted 17 January 2012

Academic Editors: V. Ferro and L. S. van Overbeek

Copyright © 2012 K. U. K. S. Kularatne and H. M. T. G. A. Pitawala. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. A. Deer, R. A. Howie, and J. Zussman, An Introduction to the Rock-Forming Minerals, ELBS, Essex, UK, 2nd edition, 1992.
  2. H. A. Dharmagunawardhana, “Fluoride in Groundwater, Surface water, Rocks and Soils of an area of endemic fluorosis in the dry zone of Sri Lanka,” in Proceedings of the 4th International Workshop on Fluorine Prevention and Defluoridation of Water, p. 7, 2004.
  3. Z. Li, Y. Tainosho, K. Shiraishi, and M. Owada, “Chemical characteristics of fluorine-bearing biotite of early Paleozoic plutonic rocks from the Sor Rondane Mountains, East Antarctica,” Geochemical Journal, vol. 37, no. 2, pp. 145–161, 2003. View at Google Scholar · View at Scopus
  4. D. K. Nordstrom, J. W. Ball, R. J. Donahoe, and D. Whittemore, “Groundwater chemistry and water-rock interactions at Stripa,” Geochimica et Cosmochimica Acta, vol. 53, no. 8, pp. 1727–1740, 1989. View at Google Scholar · View at Scopus
  5. H. Dong, D. R. Peacor, and S. F. Murphy, “TEM study of progressive alteration of igneous biotite to kaolinite throughout a weathered soil profile,” Geochimica et Cosmochimica Acta, vol. 62, no. 11, pp. 1881–1887, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. R. A. Eggleton, “The relations between crystal structure and silicate weathering rate,” in Rates of Chemical Weathering of Rocks and Minerals, Academic Press, London, UK, 1986. View at Google Scholar
  7. N. Madhavan and V. Subramanian, “Fluoride in fractionated soil samples of Ajmer district, Rajasthan,” Journal of Environmental Monitoring, vol. 4, no. 6, pp. 821–822, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. D. R. Boyle and M. Chagnon, “An incidence of skeletal fluorosis associated with groundwaters of the maritime carboniferous basin, Gaspé region, Quebec, Canada,” Environmental Geochemistry and Health, vol. 17, no. 1, pp. 5–12, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. E. H. Oelkers, “General kinetic description of multioxide silicate mineral and glass dissolution,” Geochimica et Cosmochimica Acta, vol. 65, no. 21, pp. 3703–3719, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. E. H. Oelkers and J. Schott, “An experimental study of enstatite dissolution rates as funcion of pH, temperature, and aqueous Mg and Si concentration, and the mechanism of pyroxene/pyroxenoid dissolution,” Geochimica et Cosmochimica Acta, vol. 65, no. 8, pp. 1219–1231, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. O. S. Pokrovsky and J. Schott, “Kinetics and mechanism of forsterite dissolution at 25C and pH from 1 to 12,” Geochimica et Cosmochimica Acta, vol. 64, no. 19, pp. 3313–3325, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. A. F. White and S. L. Brantley, “Chemical weathering rates of silicate minerals, an overview,” in Chemical Weathering Rates of Silicate Minerals, Mineralogical Society of America, Charlotte, NC, USA, 1995. View at Google Scholar
  13. R. S. Arvidson and F. T. Mackenzie, “The dolomite problem: control of precipitation kinetics by temperature and saturation state,” American Journal of Science, vol. 299, no. 4, pp. 257–288, 1999. View at Google Scholar · View at Scopus
  14. O. S. Pokrovsky and J. Schott, “Kinetics and mechanism of dolomite dissolution in neutral to alkaline solutions revisited,” American Journal of Science, vol. 301, no. 7, pp. 597–626, 2001. View at Google Scholar · View at Scopus
  15. J. S. Tribble, M. J. Lane, R. S. Arvidson, and F. T. Mackenzie, “Crystal chemistry, and thermodynamic and kinetic properties of calcite, dolomite, apatite, and biogenic silica: applications to petrologic problems,” Sedimentary Geology, vol. 95, no. 1-2, pp. 11–37, 1995. View at Google Scholar · View at Scopus
  16. J. B. Acker and O. P. Bricker, “The influence of pH on biotite dissolution and alteration kinetics at low temperature,” Geochimica et Cosmochimica Acta, vol. 56, no. 8, pp. 3073–3092, 1992. View at Google Scholar · View at Scopus
  17. B. E. Kalinowski and P. Schweda, “Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1-4, room temperature,” Geochimica et Cosmochimica Acta, vol. 60, no. 3, pp. 367–385, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. W. E. Kline and H. S. Fogler, “Dissolution kinetics: the nature of the particle attack of layered silicates in HF,” Chemical Engineering Science, vol. 36, no. 5, pp. 871–884, 1981. View at Google Scholar · View at Scopus
  19. M. Malmström and S. Banwart, “Biotite dissolution at 25C: the pH dependence of dissolution rate and stoichiometry,” Geochimica et Cosmochimica Acta, vol. 61, no. 14, pp. 2779–2799, 1997. View at Google Scholar · View at Scopus
  20. M. P. Turpault and L. Trotignon, “The dissolution of biotite single crystals in dilute HNO3 at 24C: evidence of an anisotropic corrosion process of micas in acidic solutions,” Geochimica et Cosmochimica Acta, vol. 58, no. 13, pp. 2761–2775, 1994. View at Google Scholar · View at Scopus
  21. D. S. Fanning and V. Z. Keramidas, Minerals in Soil Environments, Soil Science Society of America, Madison, Wis, USA, 1977.
  22. T. H. N. G. Amaraweera, Genesis of pegmatites and uses of pegnatite mine waste as fertilizer, Matale district, Sri Lanka, M.phil. thesis, Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka, 2009.
  23. T. Murakami, S. Utsunomiya, T. Yokoyama, and T. Kasama, “Biotite dissolution processes and mechanisms in the laboratory and in nature: early stage weathering environment and vermiculitization,” American Mineralogist, vol. 88, no. 2-3, pp. 377–386, 2003. View at Google Scholar · View at Scopus
  24. M. F. Brigatti and P. Davoli, “Crystal-structure refinements of 1M plutonic biotites,” American Mineralogist, vol. 75, no. 3-4, pp. 305–313, 1990. View at Google Scholar · View at Scopus
  25. K. P. Nicolini, K. C. Lombardi, W. H. Schreiner, I. Mazzaro, F. Wypych, and A. S. Mangrich, “Evidence of weathering stages of phyllosilicates from biotite/muscovite to kaolinite, probed by EPR spectroscopy,” Journal of Mineralogy and Petrology, vol. 97, no. 1-2, pp. 139–144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Velde, Introduction to Clay Minerals, Chapman & Hall, Cambridge, UK, 1992.
  27. R. J. Gilkes, R. C. Young, and J. P. Quirk, “The oxidation of octahedral iron in biotite,” Clays and Clay Minerals, vol. 20, no. 5, pp. 303–315, 1972. View at Google Scholar · View at Scopus
  28. M. A. Velbel, “Geochemical mass balances and weathering rates in forested watersheds of the southern Blue Ridge,” American Journal of Science, vol. 285, no. 10, pp. 904–930, 1985. View at Google Scholar · View at Scopus
  29. A. C. Gaur and R. P. Pareek, “Organic acids in soil during degradation of organic residues,” Proceedings of the Indian National Science Academy Part B Biological Sciences, vol. 40, no. 1, pp. 68–76, 1974. View at Google Scholar
  30. A. K. Barman, C. Varadachari, and K. Ghosh, “Weathering of silicate minerals by organic acids. I. Nature of cation solubilisation,” Geoderma, vol. 53, no. 1-2, pp. 45–63, 1992. View at Google Scholar · View at Scopus
  31. A. F. White and A. Yee, “Aqueous oxidation-reduction kinetics associated with coupled electron-cation transfer from iron-containing silicates at 25C,” Geochimica et Cosmochimica Acta, vol. 49, no. 5, pp. 1263–1275, 1985. View at Google Scholar · View at Scopus
  32. J. L. Munoz, “F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits,” Reviews in Mineralogy, vol. 13, no. 1, pp. 469–493, 1984. View at Google Scholar · View at Scopus
  33. R. F. Geise, “Electrostatic energy models of micas,” in Reviews in Mineralogy, vol. 13, pp. 105–144, Mineralogical Society of America, Charlotte, NC, USA, 1984. View at Google Scholar
  34. A. M. Kalinichenko, I. V. Matyash, T. P. Khomyak, and V. I. Palvlishin, “Distribution of octahedral cations in biotites according to the data of proton magnetic resonance,” Geochemical International, vol. 12, no. 1, pp. 18–24, 1975. View at Google Scholar
  35. J. Sanz and W. E. E. Stone, “NMR study of micas. II. Distribution of Fe2+, F and OH- in the octahedral sheet of phlogopites,” American Mineralogist, vol. 64, pp. 119–126, 1979. View at Google Scholar
  36. S. B. Hendricks, “Base exchange of the clay mineral montmorillonite for organic cations and its dependence upon adsorption due to van der Waals forces,” The Journal of Physical Chemistry, vol. 45, no. 1, pp. 65–81, 1941. View at Google Scholar