Table of Contents
ISRN Microbiology
Volume 2012, Article ID 749694, 5 pages
http://dx.doi.org/10.5402/2012/749694
Research Article

Bacterial Growth on Chitosan-Coated Polypropylene Textile

1Department of Physical Electronics, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
2Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's Faculty Hospital in Brno, 656 91 Brno, Czech Republic
3Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
4Centre of Cellular Therapy and Tissue Replacements, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic
5Department of Experimental Physics, Comenius University, 842 48 Bratislava, Slovakia

Received 19 September 2011; Accepted 10 November 2011

Academic Editors: P. Di Martino, G. Mauriello, and J. D. Stopforth

Copyright © 2012 D. Erben et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Biofouling is a problem common in all systems where microorganisms and aqueous environment meet. Prevention of biofouling is therefore important in many industrial processes. The aim of this study was to develop a method to evaluate the ability of material coating to inhibit biofilm formation. Chitosan-coated polypropylene nonwoven textile was prepared using dielectric barrier discharge plasma activation. Resistance of the textile to biofouling was then tested. First, the textile was submerged into a growth medium inoculated with green fluorescein protein labelled Pseudomonas aeruginosa. After overnight incubation at 33°C, the textile was observed using confocal laser scanning microscopy for bacterial enumeration and biofilm structure characterisation. In the second stage, the textile was used as a filter medium for prefiltered river water, and the pressure development on the in-flow side was measured to quantify the overall level of biofouling. In both cases, nontreated textile samples were used as a control. The results indicate that the chitosan coating exhibits antibacterial properties. The developed method is applicable for the evaluation of the ability to inhibit biofilm formation.