Table of Contents
ISRN Microbiology
Volume 2012 (2012), Article ID 749694, 5 pages
http://dx.doi.org/10.5402/2012/749694
Research Article

Bacterial Growth on Chitosan-Coated Polypropylene Textile

1Department of Physical Electronics, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
2Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's Faculty Hospital in Brno, 656 91 Brno, Czech Republic
3Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
4Centre of Cellular Therapy and Tissue Replacements, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic
5Department of Experimental Physics, Comenius University, 842 48 Bratislava, Slovakia

Received 19 September 2011; Accepted 10 November 2011

Academic Editors: P. Di Martino, G. Mauriello, and J. D. Stopforth

Copyright © 2012 D. Erben et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. G. Kumar and S. K. Anand, “Significance of microbial biofilms in food industry: a review,” International Journal of Food Microbiology, vol. 42, no. 1-2, pp. 9–27, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Ludensky, “Control and monitoring of biofilms in industrial applications,” International Biodeterioration and Biodegradation, vol. 51, no. 4, pp. 255–263, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. R. B. Simmons, L. J. Rose, S. A. Crow, and D. G. Ahearn, “The occurrence and persistence of mixed biofilms in automobile air conditioning systems,” Current Microbiology, vol. 39, no. 3, pp. 141–145, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. J. S. Baker and L. Y. Dudley, “Biofouling in membrane systems: a review,” Desalination, vol. 118, no. 1–3, pp. 81–89, Conference on Membranes in Drinking and Industrial Water Production, 1998.
  5. C. A. Fux, J. W. Costerton, P. S. Stewart, and P. Stoodley, “Survival strategies of infectious biofilms,” Trends in Microbiology, vol. 13, no. 1, pp. 34–40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Lewis, “Riddle of biofilm resistance,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 4, pp. 999–1007, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. W. Costerton, “Introduction to biofilm,” International Journal of Antimicrobial Agents, vol. 11, no. 3-4, pp. 217–221, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Rinaudo, “Main properties and current applications of some polysaccharides as biomaterials,” Polymer International, vol. 57, no. 3, pp. 397–430, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Kong, X. G. Chen, K. Xing, and H. J. Park, “Antimicrobial properties of chitosan and mode of action: a state of the art review,” International Journal of Food Microbiology, vol. 144, no. 1, pp. 51–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Raafat and H. G. Sahl, “Chitosan and its antimicrobial potential—a critical literature survey,” Microbial Biotechnology, vol. 2, no. 2, pp. 186–201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Rhoades and S. Roller, “Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods,” Applied and Environmental Microbiology, vol. 66, no. 1, pp. 80–86, 2000. View at Google Scholar · View at Scopus
  12. S. Roller and N. Covill, “The antifungal properties of chitosan in laboratory media and apple juice,” International Journal of Food Microbiology, vol. 47, no. 1-2, pp. 67–77, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Roller and N. Covill, “The antimicrobial properties of chitosan in mayonnaise and mayonnaise-based shrimp salads,” Journal of Food Protection, vol. 63, no. 2, pp. 202–209, 2000. View at Google Scholar · View at Scopus
  14. F. L. Mi, Y. B. Wu, S. S. Shyu, A. C. Chao, J. Y. Lai, and C. C. Su, “Asymmetric chitosan membranes prepared by dry/wet phase separation: a new type of wound dressing for controlled antibacterial release,” Journal of Membrane Science, vol. 212, no. 1-2, pp. 237–254, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. E. I. Rabea, M. E. T. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut, “Chitosan as antimicrobial agent: applications and mode of action,” Biomacromolecules, vol. 4, no. 6, pp. 1457–1465, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. N. R. Sudarshan, D. G. Hoover, and D. Knorr, “Antibacterial action of chitosan,” Food Biotechnology, vol. 6, no. 3, pp. 257–272, 1992. View at Google Scholar · View at Scopus
  17. Y. C. Chung and C. Y. Chen, “Antibacterial characteristics and activity of acid-soluble chitosan,” Bioresource Technology, vol. 99, no. 8, pp. 2806–2814, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Kaplan, “Plasma processes for wide fabric, film and non-wovens,” Surface and Coatings Technology, vol. 186, no. 1-2, pp. 214–217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Ráhel, V. Procházka, M. Zahoran, and D. Erben, “Removal of copper metal ions from aqueous solutions by plasma made chitosan filter,” Chemicke Listy, vol. 102, no. 16, pp. 1432–1435, 2008. View at Google Scholar · View at Scopus
  20. M. Simor, J. Ráhel', P. Vojtek, M. Černák, and A. Brablec, “Atmospheric-pressure diffuse coplanar surface discharge for surface treatments,” Applied Physics Letters, vol. 81, no. 15, pp. 2716–2718, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. W. A. Rutala, D. J. Weber, and Healthcare Infection Control Practices Advisory Committee (HICPAC), “Guideline for disinfection and sterilization in healthcare facilities,” 2008, http://www.cdc.gov/hicpac/Disinfection_Sterilization/toc.html.
  22. V. Holá, F. Růžička, and M. Votava, “The dynamics of Staphylococcus epidermis biofilm formation in relation to nutrition, temperature, and time,” Scripta Medica Facultatis Medicae Universitatis Brunensis Masarykianae, vol. 79, no. 3, pp. 169–174, 2006. View at Google Scholar · View at Scopus
  23. C. R. Allan and L. A. Hadwiger, “The fungicidal effect of chitosan on fungi of varying cell wall composition,” Experimental Mycology, vol. 3, no. 3, pp. 285–287, 1979. View at Google Scholar · View at Scopus
  24. X. A. Gao, W. T. Ju, W. J. Jung, and R. D. Park, “Purification and characterization of chitosanase from Bacillus cereus D-11,” Carbohydrate Polymers, vol. 72, no. 3, pp. 513–520, 2008. View at Publisher · View at Google Scholar · View at Scopus