Table of Contents
ISRN Veterinary Science
Volume 2012 (2012), Article ID 750593, 8 pages
http://dx.doi.org/10.5402/2012/750593
Research Article

Metabolic and Hormonal Alterations with Diacylglycerol and Low Glycemic Index Starch during Canine Weight Loss

1Companion Animal Nutrition Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
2Intercollegiate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
3The Nutro Company, 1550 West McEwen Drive, Franklin, TN 37067, USA
4Minato-Yokohama Animal Medical Research Center, Yokohama, Kanagawa 235-0023, Japan
5Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan

Received 12 October 2012; Accepted 27 November 2012

Academic Editors: R. Gamble and W. Yang

Copyright © 2012 Yuka Mitsuhashi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. L. Ogden, M. D. Carroll, L. R. Curtin, M. A. McDowell, C. J. Tabak, and K. M. Flegal, “Prevalence of overweight and obesity in the United States, 1999-2004,” Journal of the American Medical Association, vol. 295, no. 13, pp. 1549–1555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Mason, “Obesity in pet dogs,” The Veterinary Record, vol. 86, no. 21, pp. 612–616, 1970. View at Google Scholar · View at Scopus
  3. A. T. Edney and P. M. Smith, “Study of obesity in dogs visiting veterinary practices in the United Kingdom,” The Veterinary Record, vol. 118, no. 14, pp. 391–396, 1986. View at Google Scholar · View at Scopus
  4. S. Donoghue, L. Khoo, L. T. Glickman, and D. S. Kronfeld, “Body condition and diet of relatively healthy older dogs,” Journal of Nutrition, vol. 121, no. 11, supplement, pp. S58–S59, 1991. View at Google Scholar · View at Scopus
  5. L. T. Glickman, E. G. Sonnenschein, N. W. Clickman, S. Donoghue, and M. H. Goldschmidt, “Patterns of diet and obesity in female adult pet dogs,” Veterinary Clinical Nutrition, vol. 1, pp. 6–13, 1995. View at Google Scholar
  6. A. Misra and N. K. Vikram, “Clinical and pathophysiological consequences of abdominal adiposity and abdominal adipose tissue depots,” Nutrition, vol. 19, no. 5, pp. 457–466, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. T. M. S. Wolever, “Dietary carbohydrates and insulin action in humans,” British Journal of Nutrition, vol. 83, no. 1, pp. S97–S102, 2000. View at Google Scholar · View at Scopus
  8. B. H. Goodpaster, D. E. Kelley, R. R. Wing, A. Meier, and F. L. Thaete, “Effects of weight loss on regional fat distribution and insulin sensitivity in obesity,” Diabetes, vol. 48, no. 4, pp. 839–847, 1999. View at Google Scholar · View at Scopus
  9. D. R. Dengel, R. E. Pratley, J. M. Hagberg, E. M. Rogus, and A. P. Goldberg, “Distinct effects of aerobic exercise training and weight loss on glucose homeostasis in obese sedentary men,” Journal of Applied Physiology, vol. 81, no. 1, pp. 318–325, 1996. View at Google Scholar · View at Scopus
  10. X. R. Pan, G. W. Li, Y. H. Hu et al., “Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and diabetes study,” Diabetes Care, vol. 20, no. 4, pp. 537–544, 1997. View at Google Scholar · View at Scopus
  11. J. E. Bauer, D. Nagaoka, B. Porterpan, K. Bigley, T. Umeda, and K. Otsuji, “Postprandial lipolytic activities, lipids, and carbohydrate metabolism are altered in dogs fed diacylglycerol meals containing high- and low-glycemic-index starches,” Journal of Nutrition, vol. 136, no. 7, supplement, pp. S1955–S1957, 2006. View at Google Scholar · View at Scopus
  12. S. Saito, A. Hernandez-Ono, and H. N. Ginsberg, “Dietary 1,3-diacylglycerol protects against diet-induced obesity and insulin resistance,” Metabolism: Clinical and Experimental, vol. 56, no. 11, pp. 1566–1575, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Li, T. Xu, H. Takase et al., “Diacylglycerol-induced improvement of whole-body insulin sensitivity in type 2 diabetes mellitus: a long-term randomized, double-blind controlled study,” Clinical Nutrition, vol. 27, no. 2, pp. 203–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. F. Gautier, S. P. Choukem, and J. Girard, “Physiology of incretins (GIP and GLP-1) and abnormalities in type 2 diabetes,” Diabetes and Metabolism, vol. 34, no. 2, supplement, pp. S65–S72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Hansen, C. F. Deacon, C. Ørskov, and J. J. Holst, “Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine,” Endocrinology, vol. 140, no. 11, pp. 5356–5363, 1999. View at Google Scholar · View at Scopus
  16. R. Mentlein, “Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides,” Regulatory Peptides, vol. 85, no. 1, pp. 9–24, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Mitsuhashi, D. Nagaoka, K. Ishioka et al., “Postprandial lipid-related metabolites are altered in dogs fed dietary diacylglycerol and low glycemic index starch during weight loss,” Journal of Nutrition, vol. 140, no. 10, pp. 1815–1823, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Nagaoka, Y. Mitsuhashi, R. Angell, K. E. Bigley, and J. E. Bauer, “Re-induction of obese body weight occurs more rapidly and at lower caloric intake in beagles,” Journal of Animal Physiology and Animal Nutrition, vol. 94, no. 3, pp. 287–292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. T. J. Kieffer, C. H. S. McIntosh, and R. A. Pederson, “Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV,” Endocrinology, vol. 136, no. 8, pp. 3585–3596, 1995. View at Google Scholar · View at Scopus
  20. W. Bennet, B. Sundberg, T. Lundgren et al., “Damage to porcine islets of Langerhans after exposure to human blood in vitro, or after intraportal transplantation to cynomologus monkeys: protective effects of sCR1 and heparin,” Transplantation, vol. 69, no. 5, pp. 711–719, 2000. View at Google Scholar · View at Scopus
  21. A. Sato, P. C. Wang, and H. Ohgawara, “Effect of stimulators such as GLP-1, PACAP, and nicotinamide on glucose-stimulated insulin secretion from porcine pancreatic endocrine cells in long-term culture,” Pancreas, vol. 25, no. 1, pp. 86–93, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. D. M. Nathan, E. Schreiber, H. Fogel, S. Mojsov, and J. F. Habener, “Insulinotropic action of glucagonlike peptide-I-(7-37) in diabetic and nondiabetic subjects,” Diabetes Care, vol. 15, no. 2, pp. 270–276, 1992. View at Google Scholar · View at Scopus
  23. W. J. Burkholder and J. E. Bauer, “Foods and techniques for managing obesity in companion animals,” Journal of the American Veterinary Medical Association, vol. 212, no. 5, pp. 658–662, 1998. View at Google Scholar · View at Scopus
  24. C. Verdich, S. Toubro, B. Buemann, J. Lysgård Madsen, J. Juul Holst, and A. Astrup, “The role of postprandial releases of insulin and incretin hormones in meal-induced satiety—effect of obesity and weight reduction,” International Journal of Obesity, vol. 25, no. 8, pp. 1206–1214, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. K. S. Juntunen, L. K. Niskanen, K. H. Liukkonen, K. S. Poutanen, J. J. Holst, and H. M. Mykkänen, “Postprandial glucose, insulin, and incretin responses to grain products in healthy subjects,” American Journal of Clinical Nutrition, vol. 75, no. 2, pp. 254–262, 2002. View at Google Scholar · View at Scopus
  26. M. A. Nauck, U. Niedereichholz, R. Ettler et al., “Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans,” American Journal of Physiology, vol. 273, no. 5, part 1, pp. E981–E988, 1997. View at Google Scholar · View at Scopus
  27. G. van Dijk and T. E. Thiele, “Glucagon-like peptide-1 (7-36) amide: a central regulator of satiety and interoceptive stress,” Neuropeptides, vol. 33, no. 5, pp. 406–414, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Flint, A. Raben, A. Astrup, and J. J. Holst, “Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans,” Journal of Clinical Investigation, vol. 101, no. 3, pp. 515–520, 1998. View at Google Scholar · View at Scopus
  29. E. Näslund, B. Barkeling, N. King et al., “Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men,” International Journal of Obesity, vol. 23, no. 3, pp. 304–311, 1999. View at Google Scholar · View at Scopus
  30. M. Zander, S. Madsbad, J. L. Madsen, and J. J. Holst, “Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and β-cell function in type 2 diabetes: a parallel-group study,” Lancet, vol. 359, no. 9309, pp. 824–830, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. D. B. Pawlak, J. A. Kushner, and D. S. Ludwig, “Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals,” Lancet, vol. 364, no. 9436, pp. 778–785, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Meguro, N. Osaki, N. Matsuo, and I. Tokimitsu, “Effect of diacylglycerol on the development of impaired glucose tolerance in sucrose-fed rats,” Lipids, vol. 41, no. 4, pp. 347–355, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Yanai, H. Yoshida, Y. Tomono et al., “Effects of diacylglycerol on glucose, lipid metabolism, and plasma serotonin levels in Lean Japanese,” Obesity, vol. 16, no. 1, pp. 47–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. V. Van Harmelen, S. Reynisdottir, K. Cianflone et al., “Mechanisms involved in the regulation of free fatty acid release from isolated human fat cells by acylation-stimulating protein and insulin,” Journal of Biological Chemistry, vol. 274, no. 26, pp. 18243–18251, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. L. R. Ranganath, J. M. Beety, L. M. Morgan, J. W. Wright, R. Howland, and V. Marks, “Attenuated GLP-1 secretion in obesity: cause or consequence?” Gut, vol. 38, no. 6, pp. 916–919, 1996. View at Google Scholar · View at Scopus
  36. R. Jorde, P. F. Amland, and P. G. Burhol, “GIP and insulin responses to a test meal in healthy and obese subjects,” Scandinavian Journal of Gastroenterology, vol. 18, no. 8, pp. 1115–1119, 1983. View at Google Scholar · View at Scopus
  37. D. L. Sarson, P. G. Kopelman, and H. S. Besterman, “Disparity between glucose-dependent insulinotropic polypeptide and insulin responses in obese man,” Diabetologia, vol. 25, no. 5, pp. 386–391, 1983. View at Google Scholar · View at Scopus
  38. W. Creutzfeldt, R. Ebert, and B. Willms, “Gastric inhibitory polypeptide (GIP) and insulin in obesity: increased response to stimulation and defective feedback control of serum levels,” Diabetologia, vol. 14, no. 1, pp. 15–24, 1978. View at Google Scholar · View at Scopus
  39. P. H. Groop, “The influence of body weight, age and glucose tolerance on the relationship between GIP secretion and beta-cell function in man,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 49, no. 4, pp. 367–379, 1989. View at Google Scholar · View at Scopus
  40. B. Willms, R. Ebert, and W. Creutzfeldt, “Gastric inhibitory polypeptide (GIP) and insulin in obesity: II. Reversal of increased response to stimulation by starvation or food restriction,” Diabetologia, vol. 14, no. 6, pp. 379–387, 1978. View at Google Scholar · View at Scopus
  41. A. Shimotoyodome, D. Fukuoka, J. Suzuki et al., “Coingestion of acylglycerols differentially affects glucose-induced insulin secretion via glucose-dependent insulinotropic polypeptide in C57BL/6J mice,” Endocrinology, vol. 150, no. 5, pp. 2118–2126, 2009. View at Publisher · View at Google Scholar · View at Scopus