Table of Contents
ISRN Pediatrics
Volume 2012, Article ID 753481, 15 pages
http://dx.doi.org/10.5402/2012/753481
Review Article

Transthoracic Echocardiography in Children and Young Adults with Congenital Heart Disease

Division of Pediatric Cardiology, Department of Pediatrics, Medical University of Graz, Auenbruggerplatz 30, 8036 Graz, Austria

Received 5 March 2012; Accepted 19 April 2012

Academic Editors: T. V. Brogan and Y. M. Law

Copyright © 2012 Martin Koestenberger. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. J. Benavidez, K. Gauvreau, K. J. Jenkins, and T. Geva, “Diagnostic errors in pediatric echocardiography: development of taxonomy and identification of risk factors,” Circulation, vol. 117, no. 23, pp. 2995–3001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Sheehan and A. Redington, “The right ventricle: anatomy, physiology and clinical imaging,” Heart, vol. 94, no. 11, pp. 1510–1515, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. N. Redington, “Physiopathology of right ventricular failure,” Seminars in Thoracic and Cardiovascular Surgery. Pediatric Cardiac Surgery Annual, pp. 3–10, 2006. View at Google Scholar · View at Scopus
  4. P. P. Sengupta, J. Korinek, M. Belohlavek et al., “Left ventricular structure and function. Basic science for cardiac imaging,” Journal of the American College of Cardiology, vol. 48, no. 10, pp. 1988–2001, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. G. R. Sutherland, M. J. Stewart, K. W. Groundstroem et al., “Color Doppler myocardial imaging: a new technique for the assessment of myocardial function,” Journal of the American Society of Echocardiography, vol. 7, no. 5, pp. 441–458, 1994. View at Google Scholar · View at Scopus
  6. B. W. Eidem, C. J. McMahon, R. R. Cohen et al., “Impact of cardiac growth on doppler tissue imaging velocities: a study in healthy children,” Journal of the American Society of Echocardiography, vol. 17, no. 3, pp. 212–221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Vinereanu, A. A. Ionescu, and A. G. Fraser, “Assessment of left ventricular long axis contraction can detect early myocardial dysfunction in asymptomatic patients with severe aortic regurgitation,” Heart, vol. 85, no. 1, pp. 30–36, 2001. View at Google Scholar · View at Scopus
  8. F. Weidemann, S. Herrmann, S. Störk et al., “Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis,” Circulation, vol. 120, no. 7, pp. 577–584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Kiraly, L. Kapusta, J. M. Thijssen, and O. Daniëls, “Left ventricular myocardial function in congenital valvar aortic stenosis assessed by ultrasound tissue-velocity and strain-rate techniques,” Ultrasound in Medicine and Biology, vol. 29, no. 4, pp. 615–620, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Wahl, F. Praz, M. Schwerzmann et al., “Assessment of right ventricular systolic function: comparison between cardiac magnetic resonance derived ejection fraction and pulsed-wave tissue Doppler imaging of the tricuspid annulus,” International Journal of Cardiology, vol. 151, no. 1, pp. 58–62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Eyskens, J. Ganame, P. Claus, D. Boshoff, M. Gewillig, and L. Mertens, “Ultrasonic strain rate and strain imaging of the right ventricle in children before and after percutaneous closure of an atrial septal defect,” Journal of the American Society of Echocardiography, vol. 19, no. 8, pp. 994–1000, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Vogel, J. Sponring, S. Cullen, J. E. Deanfield, and A. N. Redington, “Regional wall motion and abnormalities of electrical depolarization and repolarization in patients after surgical repair of tetralogy of fallot,” Circulation, vol. 103, no. 12, pp. 1669–1673, 2001. View at Google Scholar · View at Scopus
  13. P. C. Frommelt, D. C. Sheridan, K. A. Mussatto et al., “Effect of shunt type on echocardiographic indices after initial palliations for hypoplastic left heart syndrome: blalock-taussig shunt versus right ventricle-pulmonary artery conduit,” Journal of the American Society of Echocardiography, vol. 20, no. 12, pp. 1364–1373, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. K. Friedberg, N. H. Silverman, A. M. Dubin, and D. N. Rosenthal, “Mechanical dyssynchrony in children with systolic dysfunction secondary to cardiomyopathy: a doppler tissue and vector velocity imaging study,” Journal of the American Society of Echocardiography, vol. 20, no. 6, pp. 756–763, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Labombarda, J. Blanc, A. Pellissier et al., “Health-e-Child Project: mechanical dyssynchrony in children with dilated cardiomyopathy,” Journal of the American Society of Echocardiography, vol. 22, no. 11, pp. 1289–1295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Janoušek, R. A. Gebauer, H. Abdul-Khaliq et al., “Cardiac resynchronisation therapy in paediatric and congenital heart disease: differential effects in various anatomical and functional substrates,” Heart, vol. 95, no. 14, pp. 1165–1171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Mori, R. Nakagawa, M. Nii et al., “Pulsed wave Doppler tissue echocardiography assessment of the long axis function of the right and left ventricles during the early neonatal period,” Heart, vol. 90, no. 2, pp. 175–180, 2004. View at Google Scholar · View at Scopus
  18. T. Kukulski, L. Hübbert, M. Arnold, B. Wranne, L. Hatle, and G. R. Sutherland, “Normal regional right ventricular function and its change with age: a Doppler Myocardial Imaging study,” Journal of the American Society of Echocardiography, vol. 13, no. 3, pp. 194–204, 2000. View at Google Scholar · View at Scopus
  19. C. Tei, L. H. Ling, D. O. Hodge et al., “New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function—a study in normals and dilated cardiomyopathy,” Journal of Cardiology, vol. 26, no. 6, pp. 357–366, 1995. View at Google Scholar · View at Scopus
  20. B. W. Eidem, P. W. O'Leary, C. Tei, and J. B. Seward, “Usefulness of the myocardial performance index for assessing right ventricular function in congenital heart disease,” American Journal of Cardiology, vol. 86, no. 6, pp. 654–658, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Murase, A. Ishida, and T. Morisawa, “Left and right ventricular myocardial performance index (Tei index) in very-low-birth-weight infants,” Pediatric Cardiology, vol. 30, no. 7, pp. 928–935, 2009. View at Google Scholar · View at Scopus
  22. M. Matter, H. Abdel-Hady, G. Attia, M. Hafez, W. Seliem, and M. Al-Arman, “Myocardial performance in asphyxiated full-term infants assessed by Doppler tissue imaging,” Pediatric Cardiology, vol. 31, no. 5, pp. 634–642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Petko, L. L. Minich, M. D. Everitt, R. Holubkov, R. E. Shaddy, and L. Y. Tani, “Echocardiographic evaluation of children with systemic ventricular dysfunction treated with carvedilol,” Pediatric Cardiology, vol. 31, no. 6, pp. 780–784, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Tekten, A. O. Onbasili, C. Ceyhan, S. Ünal, and B. Discigil, “Novel approach to measure myocardial performance index: pulsed-wave tissue Doppler echocardiography,” Echocardiography, vol. 20, no. 6, pp. 503–510, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Yasuoka, K. Harada, M. Toyono, M. Tamura, and F. Yamamoto, “Tei index determined by tissue doppler imaging in patients with pulmonary regurgitation after repair of tetralogy of fallot,” Pediatric Cardiology, vol. 25, no. 2, pp. 131–136, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. C. Vonk, M. H. Sander, F. H. J. van den Hoogen, P. L. C. M. van Riel, F. W. A. Verheugt, and A. P. J. van Dijk, “Right ventricle Tei-index: a tool to increase the accuracy of non-invasive detection of pulmonary arterial hypertension in connective tissue diseases,” European Journal of Echocardiography, vol. 8, no. 5, pp. 317–321, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. D. A. Roberson and W. Cui, “Right ventricular tei index in children: effect of method, age, body surface area, and heart rate,” Journal of the American Society of Echocardiography, vol. 20, no. 6, pp. 764–770, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. M. H. Cheung, J. F. Smallhorn, A. N. Redington, and M. Vogel, “The effects of changes in loading conditions and modulation of inotropic state on the myocardial performance index: comparison with conductance catheter measurements,” European Heart Journal, vol. 25, no. 24, pp. 2238–2242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Schwerzmann, A. M. Samman, O. Salehian et al., “Comparison of echocardiographic and cardiac magnetic resonance imaging for assessing right ventricular function in adults with repaired tetralogy of fallot,” American Journal of Cardiology, vol. 99, no. 11, pp. 1593–1597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Vogel, G. Derrick, P. A. White et al., “Systemic ventricular function in patients with transposition of the great arteries after atrial repair: a tissue doppler and conductance catheter study,” Journal of the American College of Cardiology, vol. 43, no. 1, pp. 100–106, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Vogel, M. R. Schmidt, S. B. Kristiansen et al., “Validation of myocardial acceleration during isovolumic contraction as a novel noninvasive index of right ventricular contractility: comparison with ventricular pressure-volume relations in an animal model,” Circulation, vol. 105, no. 14, pp. 1693–1699, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. L. B. Pauliks, M. Vogel, C. F. Mädler et al., “Regional response of myocardial acceleration during isovolumic contraction during dobutamine stress echocardiography: a color tissue Doppler study and comparison with angiocardiographic findings,” Echocardiography, vol. 22, no. 10, pp. 797–808, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Vogel, M. M. H. Cheung, J. Li et al., “Noninvasive assessment of left ventricular force-frequency relationships using tissue Doppler-derived isovolumic acceleration validation in an animal model,” Circulation, vol. 107, no. 12, pp. 1647–1652, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Tayyareci, Y. Nisanci, B. Umman et al., “Early detection of right ventricular systolic dysfunction by using myocardial acceleration during isovolumic contraction in patients with mitral stenosis,” European Journal of Echocardiography, vol. 9, no. 4, pp. 516–521, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. L. B. Pauliks, B. A. Pietra, C. G. DeGroff et al., “Non-invasive detection of acute allograft rejection in children by tissue Doppler imaging: myocardial velocities and myocardial acceleration during isovolumic contraction,” Journal of Heart and Lung Transplantation, vol. 24, no. 7, pp. S239–S248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. M. M. H. Cheung, J. F. Smallhorn, B. W. McCrindle, G. S. Van Arsdell, and A. N. Redington, “Non-invasive assessment of ventricular force-frequency relations in the univentricular circulation by tissue Doppler echocardiography: a novel method of assessing myocardial performance in congenital heart disease,” Heart, vol. 91, no. 10, pp. 1338–1342, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Eyskens, F. Weidemann, M. Kowalski et al., “Regional right and left ventricular function after the Senning operation: an ultrasonic study of strain rate and strain,” Cardiology in the young, vol. 14, no. 3, pp. 255–264, 2004. View at Google Scholar · View at Scopus
  38. J. Ganame, P. Claus, B. Eyskens et al., “Acute cardiac functional and morphological changes after anthracycline infusions in children,” American Journal of Cardiology, vol. 99, no. 7, pp. 974–977, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Giatrakos, M. Kinali, D. Stephens, D. Dawson, F. Muntoni, and P. Nihoyannopoulos, “Cardiac tissue velocities and strain rate in the early detection of myocardial dysfunction of asymptomatic boys with Duchenne's muscular dystrophy: relationship to clinical outcome,” Heart, vol. 92, no. 6, pp. 840–842, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Weidemann, B. Eyskens, F. Jamal et al., “Quantification of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound-based strain rate and strain imaging,” Journal of the American Society of Echocardiography, vol. 15, no. 1, pp. 20–28, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Joshi, J. M. Edwards, D. G. Wilson, J. K. Wong, S. Kotecha, and A. G. Fraser, “Reproducibility of myocardial velocity and deformation imaging in term and preterm infants,” European Journal of Echocardiography, vol. 11, no. 1, pp. 44–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. L. B. Pena, M. G. da Silva, S. C. C. Faria et al., “Quantification of regional left and right ventricular deformation indices in healthy neonates by using strain rate and strain imaging,” Journal of the American Society of Echocardiography, vol. 22, no. 4, pp. 369–375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Nestaas, A. Støylen, L. Brunvand, and D. Fugelseth, “Tissue doppler derived longitudinal strain and strain rate during the first 3 days of life in healthy term neonates,” Pediatric Research, vol. 65, no. 3, pp. 357–362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Nestaas, A. Stylen, L. Brunvand, and D. Fugelseth, “Longitudinal strain and strain rate by tissue Doppler are more sensitive indices than fractional shortening for assessing the reduced myocardial function in asphyxiated neonates,” Cardiology in the Young, vol. 21, no. 1, pp. 1–7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. L. P. Koopman, C. Slorach, W. Hui et al., “Comparison between different speckle tracking and color tissue doppler techniques to measure global and regional myocardial deformation in children,” Journal of the American Society of Echocardiography, vol. 23, no. 9, pp. 919–928, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Ganame, L. Mertens, B. W. Eidem et al., “Regional myocardial deformation in children with hypertrophic cardiomyopathy: morphological and clinical correlations,” European Heart Journal, vol. 28, no. 23, pp. 2886–2894, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Y. Ho, C. Carlsen, J. J. Thune et al., “Echocardiographic strain imaging to assess early and late consequences of sarcomere mutations in hypertrophic cardiomyopathy,” Circulation, vol. 2, no. 4, pp. 314–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Mertens, J. Ganame, P. Claus et al., “Early regional myocardial dysfunction in young patients with duchenne muscular dystrophy,” Journal of the American Society of Echocardiography, vol. 21, no. 9, pp. 1049–1054, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Ganame, P. Claus, A. Uyttebroeck et al., “Myocardial dysfunction late After low-dose anthracycline treatment in asymptomatic pediatric patients,” Journal of the American Society of Echocardiography, vol. 20, no. 12, pp. 1351–1358, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Eyskens, S. C. Brown, P. Claus et al., “The influence of pulmonary regurgitation on regional right ventricular function in children after surgical repair of tetralogy of Fallot,” European Journal of Echocardiography, vol. 11, no. 4, pp. 341–345, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. J. M. Bos, D. J. Hagler, S. Silvilairat et al., “Right ventricular function in asymptomatic individuals with a systemic right ventricle,” Journal of the American Society of Echocardiography, vol. 19, no. 8, pp. 1033–1037, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. B. H. Amundsen, T. Helle-Valle, T. Edvardsen et al., “Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging,” Journal of the American College of Cardiology, vol. 47, no. 4, pp. 789–793, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. A. J. Teske, B. W. L. De Boeck, M. Olimulder, N. H. Prakken, P. A. F. Doevendans, and M. J. Cramer, “Echocardiographic assessment of regional right ventricular function: a head-to-head comparison between 2-dimensional and tissue doppler-derived strain analysis,” Journal of the American Society of Echocardiography, vol. 21, no. 3, pp. 275–283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Leitman, P. Lysyansky, S. Sidenko et al., “Two-dimensional strain-A novel software for real-time quantitative echocardiographic assessment of myocardial function,” Journal of the American Society of Echocardiography, vol. 17, no. 10, pp. 1021–1029, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Kowalski, E. Kowalik, K. Kotliński et al., “Regional left ventricular myocardial shortening in normotensive patients late after aortic coarctation repair—normal or impaired?” Ultrasound in Medicine and Biology, vol. 35, no. 12, pp. 1947–1952, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. K. T. Laser, N. A. Haas, N. Jansen et al., “Is torsion a suitable echocardiographic parameter to detect acute changes in left ventricular afterload in children?” Journal of the American Society of Echocardiography, vol. 22, no. 10, pp. 1121–1128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Dragulescu and L. L. Mertens, “Developments in echocardiographic techniques for the evaluation of ventricular function in children,” Archives of Cardiovascular Diseases, vol. 103, no. 11-12, pp. 603–614, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Dong, F. Zhang, X. Shu et al., “Left ventricular torsional deformation in patients undergoing transcatheter closure of secundum atrial septal defect,” International Journal of Cardiovascular Imaging, vol. 25, no. 5, pp. 479–486, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. E. W. Y. Cheung, X. C. Liang, W. W. M. Lam, and Y. F. Cheung, “Impact of right ventricular dilation on left ventricular myocardial deformation in patients after surgical repair of tetralogy of fallot,” American Journal of Cardiology, vol. 104, no. 9, pp. 1264–1270, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Kutty, S. L. Deatsman, D. Russell, M. L. Nugent, P. M. Simpson, and P. C. Frommelt, “Pulmonary valve replacement improves but does not normalize right ventricular mechanics in repaired congenital heart disease: a comparative assessment using velocity vector imaging,” Journal of the American Society of Echocardiography, vol. 21, no. 11, pp. 1216–1221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. N. Moiduddin, K. Asoh, C. Slorach, L. N. Benson, and M. K. Friedberg, “Effect of transcatheter pulmonary valve implantation on short-term right ventricular function as determined by two-dimensional speckle tracking strain and strain rate imaging,” American Journal of Cardiology, vol. 104, no. 6, pp. 862–867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Giusca, V. Dambrauskaite, C. Scheurwegs et al., “Deformation imaging describes right ventricular function better than longitudinal displacement of the tricuspid ring,” Heart, vol. 96, no. 4, pp. 281–288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Puwanant, M. Park, Z. B. Popović et al., “Ventricular geometry, strain, and rotational mechanics in pulmonary hypertension,” Circulation, vol. 121, no. 2, pp. 259–266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Kittipovanonth, D. Bellavia, K. Chandrasekaran, H. R. Villarraga, T. P. Abraham, and P. A. Pellikka, “Doppler myocardial imaging for early detection of right ventricular dysfunction in patients with pulmonary hypertension,” Journal of the American Society of Echocardiography, vol. 21, no. 9, pp. 1035–1041, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Becker, E. Bilke, H. Kühl et al., “Analysis of myocardial deformation based on pixel tracking in two dimensional echocardiographic images enables quantitative assessment of regional left ventricular function,” Heart, vol. 92, no. 8, pp. 1102–1108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Y. Cho, J. Chan, R. Leano, M. Strudwick, and T. H. Marwick, “Comparison of two-dimensional speckle and tissue velocity based strain and validation with harmonic phase magnetic resonance imaging,” American Journal of Cardiology, vol. 97, no. 11, pp. 1661–1666, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Hanekom, G. Y. Cho, R. Leano, L. Jeffriess, and T. H. Marwick, “Comparison of two-dimensional speckle and tissue Doppler strain measurement during dobutamine stress echocardiography: an angiographic correlation,” European Heart Journal, vol. 28, no. 14, pp. 1765–1772, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. C. B. Ingul, H. Torp, S. A. Aase, S. Berg, A. Stoylen, and S. A. Slordahl, “Automated analysis of strain rate and strain: feasibility and clinical implications,” Journal of the American Society of Echocardiography, vol. 18, no. 5, pp. 411–418, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. W. Hui, C. Slorach, T. J. Bradley, E. T. Jaeggi, L. Mertens, and M. K. Friedberg, “Measurement of right ventricular mechanical synchrony in children using tissue doppler velocity and two-dimensional strain imaging,” Journal of the American Society of Echocardiography, vol. 23, no. 12, pp. 1289–1296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Niemann, H. Houle, L. Pinho, C. Broberg, M. Jerosch-Herold, and D. J. Sahn, “An offline analysis method for determining left ventricular myocardial velocity, strain, and twist from gradient-echo cine MRI images,” Journal of Cardiovascular Magnetic Resonance, vol. 9, pp. 276–277, 2007. View at Google Scholar
  71. U. T. Truong, X. Li, C. S. Broberg et al., “Significance of mechanical alterations in single ventricle patients on twisting and circumferential strain as determined by analysis of strain from gradient cine magnetic resonance imaging sequences,” American Journal of Cardiology, vol. 105, no. 10, pp. 1465–1469, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Ortega, J. K. Triedman, T. Geva, and D. M. Harrild, “Relation of Left ventricular dyssynchrony measured by cardiac magnetic resonance tissue tracking in repaired tetralogy of fallot to ventricular tachycardia and death,” American Journal of Cardiology, vol. 107, no. 10, pp. 1535–1540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. K. N. Hor, W. M. Gottliebson, C. Carson et al., “Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis,” Journal of the American College of Cardiology, vol. 3, no. 2, pp. 144–151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. J. M. Simpson, “Real-time three-dimensional echocardiography of congenital heart disease using a high frequency paediatric matrix transducer,” European Journal of Echocardiography, vol. 9, no. 2, pp. 222–224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Takahashi, A. Inage, I. M. Rebeyka et al., “Real-time 3-dimensional echocardiography provides new insight into mechanisms of tricuspid valve regurgitation in patients with hypoplastic left heart syndrome,” Circulation, vol. 120, no. 12, pp. 1091–1098, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Dragulescu, L. Grosse-Wortmann, C. Fackoury et al., “Echocardiographic assessment of right ventricular volumes after surgical repair of tetralogy of fallot: clinical validation of a new echocardiographic method,” Journal of the American Society of Echocardiography, vol. 24, no. 11, pp. 1191–1198, 2011. View at Publisher · View at Google Scholar
  77. P. S. Niemann, L. Pinho, T. Balbach et al., “Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-tesla magnetic resonance imaging,” Journal of the American College of Cardiology, vol. 50, no. 17, pp. 1668–1676, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Leibundgut, A. Rohner, L. Grize et al., “Dynamic assessment of right ventricular volumes and function by real-time three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients,” Journal of the American Society of Echocardiography, vol. 23, no. 2, pp. 116–126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. H. B. van der Zwaan, W. A. Helbing, J. S. McGhie et al., “Clinical value of real-time three-dimensional echocardiography for right ventricular quantification in congenital heart disease: validation with cardiac magnetic resonance imaging,” Journal of the American Society of Echocardiography, vol. 23, no. 2, pp. 134–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. N. S. Khoo, A. Young, C. Occleshaw, B. Cowan, I. S. L. Zeng, and T. L. Gentles, “Assessments of right ventricular volume and function using three-dimensional echocardiography in older children and adults with congenital heart disease: comparison with cardiac magnetic resonance imaging,” Journal of the American Society of Echocardiography, vol. 22, no. 11, pp. 1279–1288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Grewal, D. Majdalany, I. Syed, P. Pellikka, and C. A. Warnes, “Three-dimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: comparison with magnetic resonance imaging,” Journal of the American Society of Echocardiography, vol. 23, no. 2, pp. 127–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. A. E. van den Bosch, D. J. Ten Harkel, J. S. McGhie et al., “Characterization of atrial septal defect assessed by real-time 3-dimensional echocardiography,” Journal of the American Society of Echocardiography, vol. 19, no. 6, pp. 815–821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. A. E. Van Den Bosch, D. J. Ten Harkel, J. S. McGhie et al., “Feasibility and accuracy of real-time 3-dimensional echocardiographic assessment of ventricular septal defects,” Journal of the American Society of Echocardiography, vol. 19, no. 1, pp. 7–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Takahashi, V. Guerra, K. S. Roman, M. Nii, A. Redington, and J. F. Smallhorn, “Three-dimensional echocardiography improves the understanding of the mechanisms and site of left atrioventricular valve regurgitation in atrioventricular septal defect,” Journal of the American Society of Echocardiography, vol. 19, no. 12, pp. 1502–1510, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Grapsa, D. P. O'Regan, H. Pavlopoulos, G. Durighel, D. Dawson, and P. Nihoyannopoulos, “Right ventricular remodelling in pulmonary arterial hypertension with three-dimensional echocardiography: comparison with cardiac magnetic resonance imaging,” European Journal of Echocardiography, vol. 11, no. 1, pp. 64–73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. X. Lu, V. Nadvoretskiy, L. Bu et al., “Accuracy and reproducibility of real-time three-dimensional echocardiography for assessment of right ventricular volumes and ejection fraction in children,” Journal of the American Society of Echocardiography, vol. 21, no. 1, pp. 84–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Grison, N. Maschietto, E. Reffo et al., “Three-dimensional echocardiographic evaluation of right ventricular volume and function in pediatric patients: validation of the technique,” Journal of the American Society of Echocardiography, vol. 20, no. 8, pp. 921–929, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Kjaergaard, J. Hastrup Svendsen, P. Sogaard et al., “Advanced quantitative echocardiography in arrhythmogenic right ventricular cardiomyopathy,” Journal of the American Society of Echocardiography, vol. 20, no. 1, pp. 27–35, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. G. Tamborini, N. A. Marsan, P. Gripari et al., “Reference values for right ventricular volumes and ejection fraction with real-time three-dimensional echocardiography: evaluation in a large series of normal subjects,” Journal of the American Society of Echocardiography, vol. 23, no. 2, pp. 109–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. H. B. Van Der Zwaan, M. L. Geleijnse, J. S. McGhie et al., “Right ventricular quantification in clinical practice: two-dimensional vs. three-dimensional echocardiography compared with cardiac magnetic resonance imaging,” European Journal of Echocardiography, vol. 12, no. 9, pp. 656–664, 2011. View at Publisher · View at Google Scholar
  91. M. K. Friedberg, X. Su, W. Tworetzky, B. D. Soriano, A. J. Powell, and G. R. Marx, “Validation of 3D echocardiographic assessment of left ventricular volumes, mass, and ejection fraction in neonates and infants with congenital heart disease a comparison study with cardiac MRI,” Circulation, vol. 3, no. 6, pp. 735–742, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. B. D. Soriano, M. Hoch, A. Ithuralde et al., “Matrix-array 3-dimensional echocardiographic assessment of volumes, mass, and ejection fraction in young pediatric patients with a functional single ventricle: a comparison study with cardiac magnetic resonance,” Circulation, vol. 117, no. 14, pp. 1842–1848, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. M. K. Friedberg and N. H. Silverman, “Cardiac ventricular diastolic and systolic duration in children with heart failure secondary to idiopathic dilated cardiomyopathy,” American Journal of Cardiology, vol. 97, no. 1, pp. 101–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. M. K. Friedberg and N. H. Silverman, “The systolic to diastolic duration ratio in children with heart failure secondary to restrictive cardiomyopathy,” Journal of the American Society of Echocardiography, vol. 19, no. 11, pp. 1326–1331, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. D. R. Patel, W. Cui, K. Gambetta, and D. A. Roberson, “A comparison of tei index versus systolic to diastolic ratio to detect left ventricular dysfunction in pediatric patients,” Journal of the American Society of Echocardiography, vol. 22, no. 2, pp. 152–158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. M. K. Friedberg and N. H. Silverman, “The systolic to diastolic duration ratio in children with hypoplastic left heart syndrome: a novel Doppler index of right ventricular function,” Journal of the American Society of Echocardiography, vol. 20, no. 6, pp. 749–755, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. R. Sarnari, R. Y. Kamal, M. K. Friedberg, and N. H. Silverman, “Doppler assessment of the ratio of the systolic to diastolic duration in normal children: relation to heart rate, age and body surface area,” Journal of the American Society of Echocardiography, vol. 22, no. 8, pp. 928–932, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. J. Alkon, T. Humpl, C. Manlhiot, B. W. McCrindle, J. T. Reyes, and M. K. Friedberg, “Usefulness of the right ventricular systolic to diastolic duration ratio to predict functional capacity and survival in children with pulmonary arterial hypertension,” American Journal of Cardiology, vol. 106, no. 3, pp. 430–436, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. P. P. Sengupta, V. K. Krishnamoorthy, J. Korinek et al., “Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging,” Journal of the American Society of Echocardiography, vol. 20, no. 5, pp. 539–551, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. D. Miller, M. G. Farah, A. Liner, K. Fox, M. Schluchter, and B. D. Hoit, “The relation between quantitative right ventricular ejection fraction and indices of tricuspid annular motion and myocardial performance,” Journal of the American Society of Echocardiography, vol. 17, no. 5, pp. 443–447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Meluzín, L. Špinarová, J. Bakala et al., “Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion. A new, rapid, and non-invasive method of evaluating right ventricular systolic function,” European Heart Journal, vol. 22, no. 4, pp. 340–348, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. J. Meluzín, L. Špinarová, L. Dušek, J. Toman, P. Hude, and J. Krejčí, “Prognostic importance of the right ventricular function assessed by Doppler tissue imaging,” European Journal of Echocardiography, vol. 4, no. 4, pp. 262–271, 2003. View at Publisher · View at Google Scholar
  103. D. Tüller, M. Steiner, A. Wahl, M. Kabok, and C. Seiler, “Systolic right ventricular function assessment by pulsed wave tissue Doppler imaging of the tricuspid annulus,” Swiss Medical Weekly, vol. 135, no. 31-32, pp. 461–468, 2005. View at Google Scholar · View at Scopus
  104. N. Saxena, N. Rajagopalan, K. Edelman, and A. López-Candales, “Tricuspid annular systolic velocity: a useful measurement in determining right ventricular systolic function regardless of pulmonary artery pressures,” Echocardiography, vol. 23, no. 9, pp. 750–755, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Koestenberger, B. Nagel, W. Ravekes et al., “Reference values of tricuspid annular peak systolic velocity in healthy pediatric patients, calculation of Z score, and comparison to tricuspid annular plane systolic excursion,” American Journal of Cardiology, vol. 109, no. 1, pp. 116–121, 2012. View at Publisher · View at Google Scholar
  106. M. Koestenberger, W. Ravekes, A. D. Everett et al., “Right ventricular function in infants, children and adolescents: reference values of the Tricuspid Annular Plane Systolic Excursion (TAPSE) in 640 healthy patients and calculation of z score values,” Journal of the American Society of Echocardiography, vol. 22, no. 6, pp. 715–719, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. B. A. Popescu, F. Antonini-Canterin, P. L. Temporelli et al., “Right ventricular functional recovery after acute myocardial infarction: relation with left ventricular function and interventricular septum motion. GISSI-3 echo substudy,” Heart, vol. 91, no. 4, pp. 484–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Koestenberger, B. Nagel, W. Ravekes et al., “Tricuspid annular plane systolic excursion and right ventricular ejection fraction in pediatric and adolescent patients with tetralogy of Fallot, patients with atrial septal defect, and age-matched normal subjects,” Clinical Research in Cardiology, vol. 100, no. 1, pp. 67–75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Koestenberger, B. Nagel, W. Ravekes et al., “Systolic right ventricular function in pediatric and adolescent patients with tetralogy of Fallot: echocardiography versus magnetic resonance imaging,” Journal of the American Society of Echocardiography, vol. 24, no. 1, pp. 45–52, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. B. Lamia, J. L. Teboul, X. Monnet, C. Richard, and D. Chemla, “Relationship between the tricuspid annular plane systolic excursion and right and left ventricular function in critically ill patients,” Intensive Care Medicine, vol. 33, no. 12, pp. 2143–2149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. L. Lopez, S. D. Colan, P. C. Frommelt et al., “Recommendations for quantification methods during the performance of a pediatric echocardiogram: a Report From the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council,” Journal of the American Society of Echocardiography, vol. 23, no. 5, pp. 465–495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. D. A. Roberson, W. Cui, Z. Chen, L. F. Madronero, and B. F. Cuneo, “Annular and septal Doppler tissue imaging in children: normal z-score tables and effects of age, heart rate, and body surface area,” Journal of the American Society of Echocardiography, vol. 20, no. 11, pp. 1276–1284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. P. R. Forfia, M. R. Fisher, S. C. Mathai et al., “Tricuspid annular displacement predicts survival in pulmonary hypertension,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 9, pp. 1034–1041, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. S. G. Haworth and A. A. Hislop, “Treatment and survival in Children with pulmonary arterial hypertension: the UK Pulmonary Hypertension Service for Children 2001–2006,” Heart, vol. 95, no. 4, pp. 312–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Milan, C. Magnino, and F. Veglio, “Echocardiographic Indexes for the Non-Invasive Evaluation of Pulmonary Hemodynamics,” Journal of the American Society of Echocardiography, vol. 23, no. 3, pp. 225–239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. R. Rydman, M. Söderberg, F. Larsen, K. Caidahl, and M. Alam, “Echocardiographic evaluation of right ventricular function in patients with acute pulmonary embolism: a study using tricuspid annular motion,” Echocardiography, vol. 27, no. 3, pp. 286–293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. I. Çetin, K. Tokel, B. Varan, U. Örün, and S. Aşlamaci, “Evaluation of right ventricular function by using tissue doppler imaging in patients after repair of tetralogy of fallot,” Echocardiography, vol. 26, no. 8, pp. 950–957, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. A. López-Candales, N. Rajagopalan, N. Saxena, B. Gulyasy, K. Edelman, and R. Bazaz, “Right ventricular systolic function is not the sole determinant of tricuspid annular motion,” American Journal of Cardiology, vol. 98, no. 7, pp. 973–977, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Koestenberger, B. Nagel, W. Ravekes et al., “Systolic right ventricular function in preterm and term neonates: reference values of the tricuspid annular plane systolic excursion (TAPSE) in 258 patients and calculation of z-score values,” Neonatology, vol. 100, no. 1, pp. 85–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Koestenberger, B. Nagel, W. Ravekes et al., “Left ventricular long-axis function: Reference values of the mitral annular plane systolic excursion (MAPSE) in 558 healthy children and calculation of z-score values,” American Heart Journal. In press.
  121. M. Koestenberger, B. Nagel, A. Avian et al., “Systolic right ventricular function in children and young adults with pulmonary artery hypertension secondary to congenital heart disease and tetralogy of Fallot: tricuspid annular plane systolic excursion (TAPSE) and magnetic resonance imaging data,” Congenital Heart Disease, vol. 7, no. 3, pp. 250–258, 2012. View at Publisher · View at Google Scholar · View at Scopus
  122. T. Oosterhof, I. I. Tulevski, H. W. Vliegen, A. M. Spijkerboer, and B. J. M. Mulder, “Effects of volume and/or pressure overload secondary to congenital heart disease (tetralogy of Fallot or pulmonary stenosis) on right ventricular function using cardiovascular magnetic resonance and B-type natriuretic peptide levels,” American Journal of Cardiology, vol. 97, no. 7, pp. 1051–1055, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. J. Kjaergaard, C. L. Petersen, A. Kjaer, B. K. Schaadt, J. K. Oh, and C. Hassager, “Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI,” European Journal of Echocardiography, vol. 7, no. 6, pp. 430–438, 2006. View at Publisher · View at Google Scholar · View at Scopus