Table of Contents
ISRN Microbiology
Volume 2012, Article ID 753892, 12 pages
http://dx.doi.org/10.5402/2012/753892
Research Article

Characterization of a Methanogenic Community within an Algal Fed Anaerobic Digester

Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, USA

Received 13 March 2012; Accepted 24 April 2012

Academic Editors: J. Maupin-Furlow and T. P. West

Copyright © 2012 Joshua T. Ellis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. G. Shin, C. Lee, K. Hwang, J. H. Ahn, and S. Hwang, “Use of order-specific primers to investigate the methanogenic diversity in acetate enrichment system,” Journal of Industrial Microbiology and Biotechnology, vol. 35, no. 11, pp. 1345–1352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Sialve, N. Bernet, and O. Bernard, “Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable,” Biotechnology Advances, vol. 27, no. 4, pp. 409–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. P. E. Wiley, J. E. Campbell, and B. McKuin, “Production of biodiesel and biogas from algae: a review of process train options,” Water Environment Research, vol. 83, no. 4, pp. 326–338, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Zeng, X. Yuan, X. Shi, and Y. Qiu, “Effect of inoculum/substrate ratio on methane yield and orthophosphate release from anaerobic digestion of Microcystis spp.,” Journal of Hazardous Materials, vol. 178, no. 1–3, pp. 89–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Kröber, T. Bekel, N. N. Diaz et al., “Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing,” Journal of Biotechnology, vol. 142, no. 1, pp. 38–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. C. Kunz, Y. C. Horng, and S. W. Ragsdale, “Spectroscopic and kinetic studies of the reaction of bromopropanesulfonate with methyl-coenzyme M reductase,” Journal of Biological Chemistry, vol. 281, no. 45, pp. 34663–34676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. R. K. Thauer, A. K. Kaster, H. Seedorf, W. Buckel, and R. Hedderich, “Methanogenic archaea: ecologically relevant differences in energy conservation,” Nature Reviews Microbiology, vol. 6, no. 8, pp. 579–591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Pimentel, A. Marklein, M. A. Toth et al., “Food versus biofuels: environmental and economic costs,” Human Ecology, vol. 37, no. 1, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Tabatabaei, R. A. Rahim, N. Abdullah et al., “Importance of the methanogenic archaea populations in anaerobic wastewater treatments,” Process Biochemistry, vol. 45, no. 8, pp. 1214–1225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Erkel, D. Kemnitz, M. Kube et al., “Retrieval of first genome data for rice cluster I methanogens by a combination of cultivation and molecular techniques,” FEMS Microbiology Ecology, vol. 53, no. 2, pp. 187–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. W. Friedrich, “Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea,” Methods in Enzymology, vol. 397, pp. 428–442, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. G. Ferry, “Enzymology of one-carbon metabolism in methanogenic pathways,” FEMS Microbiology Reviews, vol. 23, no. 1, pp. 13–38, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Archer, “Methanogenesis—ecology,physiology, biochemistry and genetics—Ferry,Jg,” Nature, vol. 367, no. 64, pp. 604–605, 1994. View at Google Scholar
  14. P. V. Welander and W. W. Metcalf, “Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway,” Journal of Bacteriology, vol. 190, no. 6, pp. 1928–1936, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. P. V. Welander and W. W. Metcalf, “Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10664–10669, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Dhillon, M. Lever, K. G. Lloyd, D. B. Albert, M. L. Sogin, and A. Teske, “Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin,” Applied and Environmental Microbiology, vol. 71, no. 8, pp. 4592–4601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. D. White, The Physiology and Biochemistry of Prokaryotes, Oxford University, New York, NY, USA, 3rd edition, 2007.
  18. M. Dworkin and S. Falkow, The Prokaryotes : A Handbook on the Biology of Bacteria, Springer, London, UK, 3rd edition, 2006.
  19. H. Juottonen, P. E. Galand, and K. Yrjälä, “Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene,” Research in Microbiology, vol. 157, no. 10, pp. 914–921, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Cadillo-Quiroz, J. B. Yavitt, and S. H. Zinder, “Methanosphaerula palustris gen. nov., sp. nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland,” International Journal of Systematic and Evolutionary Microbiology, vol. 59, no. 5, pp. 928–935, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. P. E. Luton, J. M. Wayne, R. J. Sharp, and P. W. Riley, “The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill,” Microbiology, vol. 148, no. 11, pp. 3521–3530, 2002. View at Google Scholar · View at Scopus
  22. C. Zhu, J. Zhang, Y. Tang, X. Zhengkai, and R. Song, “Diversity of methanogenic archaea in a biogas reactor fed with swine feces as the mono-substrate by mcrA analysis,” Microbiological Research, vol. 166, no. 1, pp. 27–35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Briand and P. Morand, “Anaerobic digestion of Ulva sp. 1. Relationship between Ulva composition and methanisation,” Journal of Applied Phycology, vol. 9, no. 6, pp. 511–524, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Samson and A. LeDuy, “Biogas production from Anaerobic digestion of spirulina maxima Algal biomass,” Biotechnology and Bioengineering, vol. 24, no. 8, pp. 1919–1924, 1982. View at Google Scholar · View at Scopus
  25. A. Vergara-Fernández, G. Vargas, N. Alarcón, and A. Velasco, “Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system,” Biomass and Bioenergy, vol. 32, no. 4, pp. 338–344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. Yan, M. Zhao, H. Miao, W. Ruan, and R. Song, “Coupling of the hydrogen and polyhydroxyalkanoates (PHA) production through anaerobic digestion from Taihu blue algae,” Bioresource Technology, vol. 101, no. 12, pp. 4508–4512, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Yuan, X. Shi, D. Zhang, Y. Qiu, R. Guo, and L. Wang, “Biogas production and microcystin biodegradation in anaerobic digestion of blue algae,” Energy and Environmental Science, vol. 4, no. 4, pp. 1511–1515, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. B. A. Hales, C. Edwards, D. A. Ritchie, G. Hall, R. W. Pickup, and J. R. Saunders, “Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis,” Applied and Environmental Microbiology, vol. 62, no. 2, pp. 668–675, 1996. View at Google Scholar · View at Scopus
  29. P. Kanokratana, T. Uengwetwanit, U. Rattanachomsri et al., “Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis,” Microbial Ecology, vol. 61, no. 3, pp. 518–528, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. M. F. Rother, “Genetic analysis of methanogenic archaea,” 2008, http://www.uni-frankfurt.de/fb/fb15/institute/inst-3-mol-biowiss/AK-Rother/research.html/.
  31. K. Tamura, J. Dudley, M. Nei, and S. Kumar, “MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0,” Molecular Biology and Evolution, vol. 24, no. 8, pp. 1596–1599, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Tamura and M. Nei, “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees,” Molecular Biology and Evolution, vol. 10, no. 3, pp. 512–526, 1993. View at Google Scholar · View at Scopus
  34. R. D. Barber, L. Zhang, M. Harnack et al., “Complete genome sequence of Methanosaeta concilii, a specialist in aceticlastic methanogenesis,” Journal of Bacteriology, vol. 193, no. 14, pp. 3668–3669, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Schlüter, T. Bekel, N. N. Diaz et al., “The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology,” Journal of Biotechnology, vol. 136, no. 1-2, pp. 77–90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. P. E. Galand, H. Fritze, R. Conrad, and K. Yrjälä, “Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems,” Applied and Environmental Microbiology, vol. 71, no. 4, pp. 2195–2198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Zhu, X. Liu, and X. Dong, “Methanobacterium movens sp. nov. and Methanobacterium flexile sp. nov., isolated from lake sediment,” International Journal of Systematic and Evolutionary Microbiology, vol. 61, no. 12, pp. 2974–2978, 2011. View at Google Scholar
  38. L. Cheng, T. L. Qiu, X. Li et al., “Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China,” FEMS Microbiology Letters, vol. 285, no. 1, pp. 65–71, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Imachi, S. Sakai, Y. Sekiguchi et al., “Methanolinea tarda gen. nov., sp. nov. a methane-producing archaeon isolated from a methanogenic digester sludge,” International Journal of Systematic and Evolutionary Microbiology, vol. 58, no. 1, pp. 294–301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Yashiro, S. Sakai, M. Ehara, M. Miyazaki, T. Yamaguchi, and H. Imachi, “Methanoregula formicica sp. nov., a methane-producing archaeon isolated from methanogenic sludge,” International Journal of Systematic and Evolutionary Microbiology, vol. 61, no. 1, pp. 53–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Iino, K. Mori, and K. I. Suzuki, “Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei,” International Journal of Systematic and Evolutionary Microbiology, vol. 60, no. 11, pp. 2563–2566, 2010. View at Publisher · View at Google Scholar · View at Scopus