Table of Contents
ISRN Cell Biology
Volume 2012, Article ID 787934, 36 pages
http://dx.doi.org/10.5402/2012/787934
Review Article

Impact of Salmonella enterica Type III Secretion System Effectors on the Eukaryotic Host Cell

Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain

Received 4 November 2012; Accepted 22 November 2012

Academic Editors: R. Botelho, G. C. Chen, N. Kataoka, and C. M. Wells

Copyright © 2012 Francisco Ramos-Morales. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. Dalbey and A. Kuhn, “Protein Traffic in Gram-negative bacteria—how exported and secreted proteins find their way,” FEMS Microbiology Reviews, vol. 36, no. 6, pp. 1023–1045, 2012. View at Google Scholar
  2. D. Buttner, “Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria,” Microbiology and Molecular Biology Reviews, vol. 76, no. 2, pp. 262–310, 2012. View at Publisher · View at Google Scholar
  3. P. Cossart, P. Boquet, S. Normark, and R. Rappuoli, “Cellular microbiology emerging,” Science, vol. 271, no. 5247, pp. 315–316, 1996. View at Google Scholar · View at Scopus
  4. P. Garai, D. P. Gnanadhas, and D. Chakravortty, “Salmonella enterica serovars Typhimurium and Typhi as model organisms: revealing paradigm of host-pathogen interactions,” Virulence, vol. 3, no. 4, pp. 377–388, 2012. View at Google Scholar
  5. J. E. Galan and R. Curtiss, “Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 16, pp. 6383–6387, 1989. View at Google Scholar · View at Scopus
  6. H. Ochman, F. C. Soncini, F. Solomon, and E. A. Groisman, “Identification of a pathogenicity island required for Salmonella survival in host cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 15, pp. 7800–7804, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. J. E. Shea, M. Hensel, C. Gleeson, and D. W. Holden, “Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 6, pp. 2593–2597, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Malik-Kale, C. E. Jolly, S. Lathrop, S. Winfree, C. Luterbach et al., “Salmonella—at home in the host cell,” Frontiers in Microbiology, vol. 2, p. 125, 2011. View at Google Scholar
  9. S. M. Bueno, A. Wozniak, E. D. Leiva et al., “Salmonella pathogenicity island 1 differentially modulates bacterial entry to dendritic and non-phagocytic cells,” Immunology, vol. 130, no. 2, pp. 273–287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. A. Clark, M. A. Jepson, N. L. Simmons, and B. H. Hirst, “Preferential interaction of Salmonella typhimurium with mouse Peyer's patch M cells,” Research in Microbiology, vol. 145, no. 7, pp. 543–552, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. B. B. Finlay, B. Gumbiner, and S. Falkow, “Penetration of Salmonella through a polarized Madin-Darby canine kidney epithelial cell monolayer,” Journal of Cell Biology, vol. 107, no. 1, pp. 221–230, 1988. View at Google Scholar · View at Scopus
  12. C. V. da Silva, L. Cruz, S. Araujo Nda, M. B. Angeloni, B. B. Fonseca et al., “A glance at Listeria and Salmonella cell invasion: different strategies to promote host actin polymerization,” International Journal of Medical Microbiology, vol. 302, no. 1, pp. 19–32, 2011. View at Google Scholar
  13. M. Rosselin, I. Virlogeux-Payant, C. Roy et al., “Rck of Salmonella enterica, subspecies enterica serovar Enteritidis, mediates Zipper-like internalization,” Cell Research, vol. 20, no. 6, pp. 647–664, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Fuentes, N. Villagra, M. Castillo-Ruiz, and G. C. Mora, “The Salmonella Typhi hlyE gene plays a role in invasion of cultured epithelial cells and its functional transfer to S. typhimurium promotes deep organ infection in mice,” Research in Microbiology, vol. 159, no. 4, pp. 279–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Lambert and S. G. J. Smith, “The PagN protein of Salmonella enterica serovar Typhimurium is an adhesin and invasin,” BMC Microbiology, vol. 8, article 142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Lambert and S. G. J. Smith, “The PagN protein mediates invasion via interaction with proteoglycan,” FEMS Microbiology Letters, vol. 297, no. 2, pp. 209–216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Rosselin, N. Abed, I. Virlogeux-Payant et al., “Heterogeneity of type III secretion system (T3SS)-1-independent entry mechanisms used by Salmonella Enteritidis to invade different cell types,” Microbiology, vol. 157, no. 3, pp. 839–847, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Velge, A. Wiedemann, M. Rosselin, N. Abed, Z. Boumart et al., “Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis,” MicrobiologyOpen, vol. 1, no. 3, pp. 243–258, 2012. View at Google Scholar
  19. B. Misselwitz, N. Barrett, S. Kreibich, P. Vonaesch, D. Andritschke et al., “Near surface swimming of Salmonella typhimurium explains target-site selection and cooperative invasion,” PLOS Pathogens, vol. 8, no. 7, Article ID 100281, 2012. View at Google Scholar
  20. E. J. McGhie, R. D. Hayward, and V. Koronakis, “Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin,” The EMBO Journal, vol. 20, no. 9, pp. 2131–2139, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Zhou, M. S. Mooseker, and J. E. Galán, “An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 18, pp. 10176–10181, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. E. J. McGhie, R. D. Hayward, and V. Koronakis, “Control of actin turnover by a Salmonella invasion protein,” Molecular Cell, vol. 13, no. 4, pp. 497–510, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Chang, J. Chen, and D. Zhou, “Delineation and characterization of the actin nucleation and effector translocation activities of Salmonella SipC,” Molecular Microbiology, vol. 55, no. 5, pp. 1379–1389, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. K. Myeni and D. Zhou, “The C terminus of SipC binds and bundles F-actin to promote Salmonella invasion,” The Journal of Biological Chemistry, vol. 285, no. 18, pp. 13357–13363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. W. D. Hardt, L. M. Chen, K. E. Schuebel, X. R. Bustelo, and J. E. Galán, “S. typhimurium Encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells,” Cell, vol. 93, no. 5, pp. 815–826, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Stender, A. Friebel, S. Linder, M. Rohde, S. Mirold, and W. D. Hardt, “Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell,” Molecular Microbiology, vol. 36, no. 6, pp. 1206–1221, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Patel and J. E. Galán, “Differential activation and function of Rho GTPases during Salmonella-host cell interactions,” Journal of Cell Biology, vol. 175, no. 3, pp. 453–463, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Fu and J. E. Galán, “A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion,” Nature, vol. 401, no. 6750, pp. 293–297, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. K. T. Ly and J. E. Casanova, “Abelson Tyrosine kinase facilitates Salmonella enterica serovar typhimurium entry into epithelial cells,” Infection and Immunity, vol. 77, no. 1, pp. 60–69, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Shi and J. E. Casanova, “Invasion of host cells by Salmonella typhimurium requires focal adhesion kinase and p130Cas,” Molecular Biology of the Cell, vol. 17, no. 11, pp. 4698–4708, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Murli, R. O. Watson, and J. E. Galán, “Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells,” Cellular Microbiology, vol. 3, no. 12, pp. 795–810, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. M. D. Brown, L. Bry, Z. Li, and D. B. Sacks, “IQGAP1 regulates Salmonella invasion through interactions with actin, Rac1, and Cdc42,” The Journal of Biological Chemistry, vol. 282, no. 41, pp. 30265–30272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Kim, C. D. White, Z. Li, and D. B. Sacks, “Salmonella enterica serotype Typhimurium usurps the scaffold protein IQGAP1 to manipulate Rac1 and MAPK signalling,” The Biochemical Journal, vol. 440, no. 3, pp. 309–318, 2011. View at Google Scholar
  34. E. Bassères, G. Coppotelli, T. Pfirrmann, J. B. Andersen, M. Masucci, and T. Frisan, “The ubiquitin C-terminal hydrolase UCH-L1 promotes bacterial invasion by altering the dynamics of the actin cytoskeleton,” Cellular Microbiology, vol. 12, no. 11, pp. 1622–1633, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. C. D. Nichols and J. E. Casanova, “Salmonella-directed recruitment of new membrane to invasion foci via the host exocyst complex,” Current Biology, vol. 20, no. 14, pp. 1316–1320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Dai, Y. Zhang, T. Weimbs, M. B. Yaffe, and D. Zhou, “Bacteria-generated PtdIns(3) P recruits VAMP8 to facilitate phagocytosis,” Traffic, vol. 8, no. 10, pp. 1365–1374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. J. A. Guttman and B. B. Finlay, “Tight junctions as targets of infectious agents,” Biochimica et Biophysica Acta, vol. 1788, no. 4, pp. 832–841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. E. C. Boyle, N. F. Brown, and B. B. Finlay, “Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function,” Cellular Microbiology, vol. 8, no. 12, pp. 1946–1957, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. A. P. Liao, E. O. Petrof, S. Kuppireddi et al., “Salmonella type III effector AvrA stabilizes cell tight junctions to inhibit inflammation in intestinal epithelial cells,” PLoS ONE, vol. 3, no. 6, Article ID e2369, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. F. García-del Portillo, C. Núñez-Hernández, B. Eisman, and J. Ramos-Vivas, “Growth control in the Salmonella-containing vacuole,” Current Opinion in Microbiology, vol. 11, no. 1, pp. 46–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Schroeder, L. J. Mota, and S. Méresse, “Salmonella-induced tubular networks,” Trends in Microbiology, vol. 19, no. 6, pp. 268–277, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. A. E. Ramsden, L. J. Mota, S. Münter, S. L. Shorte, and D. W. Holden, “The SPI-2 type III secretion system restricts motility of Salmonella-containing vacuoles,” Cellular Microbiology, vol. 9, no. 10, pp. 2517–2529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. A. C. Smith, D. H. Won, V. Braun et al., “A network of Rab GTPases controls phagosome maturation and is modulated by Salmonella enterica serovar Typhimurium,” Journal of Cell Biology, vol. 176, no. 3, pp. 263–268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. O. Steele-Mortimer, L. A. Knodler, S. L. Marcus et al., “Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector SigD,” The Journal of Biological Chemistry, vol. 275, no. 48, pp. 37718–37724, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. M. R. Terebiznik, O. V. Vieira, S. L. Marcus et al., “Elimination of host cell Ptdlns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella,” Nature Cell Biology, vol. 4, no. 10, pp. 766–773, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. M. A. Bakowski, V. Braun, G. Y. Lam et al., “The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole,” Cell Host & Microbe, vol. 7, no. 6, pp. 453–462, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. G. V. Mallo, M. Espina, A. C. Smith et al., “SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34,” Journal of Cell Biology, vol. 182, no. 4, pp. 741–752, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. V. Braun, A. Wong, M. Landekic, W. J. Hong, S. Grinstein, and J. H. Brumell, “Sorting nexin 3 (SNX3) is a component of a tubular endosomal network induced by Salmonella and involved in maturation of the Salmonella-containing vacuole,” Cellular Microbiology, vol. 12, no. 9, pp. 1352–1367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. M. V. Bujny, P. A. Ewels, S. Humphrey, N. Attar, M. A. Jepson, and P. J. Cullen, “Sorting nexin-1 defines an early phase of Salmonella-containing vacuole-remodeling during Salmonella infection,” Journal of Cell Science, vol. 121, no. 12, pp. 2027–2036, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Garcia-del Portillo and B. B. Finlay, “Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors,” Journal of Cell Biology, vol. 129, no. 1, pp. 81–97, 1995. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Drecktrah, L. A. Knodler, D. Howe, and O. Steele-Mortimer, “Salmonella trafficking is defined by continuous dynamic interactions with the endolysosomal system,” Traffic, vol. 8, no. 3, pp. 212–225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. O. H. Yu-Kyoung, C. Alpuche-Aranda, E. Berthiaume, T. Jinks, S. I. Miller, and J. A. Swanson, “Rapid and complete fusion of macrophage lysosomes with phagosomes containing Salmonella typhimurium,” Infection and Immunity, vol. 64, no. 9, pp. 3877–3883, 1996. View at Google Scholar · View at Scopus
  53. D. Humphreys, P. J. Hume, and V. Koronakis, “The Salmonella effector SptP dephosphorylates host AAA+ ATPase VCP to promote development of its intracellular replicative niche,” Cell Host & Microbe, vol. 5, no. 3, pp. 225–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. J. A. Wasylnka, M. A. Bakowski, J. Szeto et al., “Role for myosin II in regulating positioning of Salmonella-containing vacuoles and intracellular replication,” Infection and Immunity, vol. 76, no. 6, pp. 2722–2735, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Drecktrah, S. Levine-Wilkinson, T. Dam et al., “Dynamic behavior of Salmonella-induced membrane tubules in epithelial cells,” Traffic, vol. 9, no. 12, pp. 2117–2129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Rajashekar, D. Liebl, A. Seitz, and M. Hensel, “Dynamic remodeling of the endosomal system during formation of Salmonella-induced filaments by intracellular Salmonella enterica,” Traffic, vol. 9, no. 12, pp. 2100–2116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. O. Steele-Mortimer, “The Salmonella-containing vacuole—moving with the times,” Current Opinion in Microbiology, vol. 11, no. 1, pp. 38–45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. L. J. Mota, A. E. Ramsden, M. Liu, J. D. Castle, and D. W. Holden, “SCAMP3 is a component of the Salmonella-induced tubular network and reveals an interaction between bacterial effectors and post-Golgi trafficking,” Cellular Microbiology, vol. 11, no. 8, pp. 1236–1253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Schroeder, T. Henry, C. de Chastellier et al., “The virulence protein SopD2 regulates membrane dynamics of Salmonella-containing vacuoles,” PLoS pathogens, vol. 6, no. 7, Article ID e1001002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Deiwick, S. P. Salcedo, E. Boucrot et al., “The translocated Salmonella effector proteins SseF and SseG interact and are required to establish an intracellular replication niche,” Infection and Immunity, vol. 74, no. 12, pp. 6965–6972, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Malik-Kale, S. Winfree, and O. Steele-Mortimer, “The bimodal lifestyle of intracellular Salmonella in epithelial cells: replication in the cytosol obscures defects in vacuolar replication,” PLoS ONE, vol. 7, no. 6, 2012. View at Google Scholar
  62. J. Szeto, A. Namolovan, S. E. Osborne, B. K. Coombes, and J. H. Brumell, “Salmonella-containing vacuoles display centrifugal movement associated with cell-to-cell transfer in epithelial cells,” Infection and Immunity, vol. 77, no. 3, pp. 996–1007, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. L. A. Knodler, B. A. Vallance, J. Celli et al., “Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 41, pp. 17733–17738, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. D. G. Guiney, “The role of host cell death in Salmonella infections,” Current Topics in Microbiology and Immunology, vol. 289, pp. 131–150, 2005. View at Google Scholar · View at Scopus
  65. S. L. Fink and B. T. Cookson, “Pyroptosis and host cell death responses during Salmonella infection,” Cellular Microbiology, vol. 9, no. 11, pp. 2562–2570, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. J. M. Kim, L. Eckmann, T. C. Savidge, D. C. Lowe, T. Witthöft, and M. F. Kagnoff, “Apoptosis of human intestinal epithelial cells after bacterial invasion,” Journal of Clinical Investigation, vol. 102, no. 10, pp. 1815–1823, 1998. View at Google Scholar · View at Scopus
  67. G. Paesold, D. G. Guiney, L. Eckmann, and M. F. Kagnoff, “Genes in the Salmonella pathogenicity island 2 and the Salmonella virulence plasmid are essential for Salmonella-induced apoptosis in intestinal epithelial cells,” Cellular Microbiology, vol. 4, no. 11, pp. 771–781, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Bernal-Bayard, E. Cardenal-Muñoz, and F. Ramos-Morales, “The Salmonella type III secretion effector, Salmonella Leucine-rich Repeat Protein (SlrP), targets the human chaperone ERdj3,” The Journal of Biological Chemistry, vol. 285, no. 21, pp. 16360–16368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Bernal-Bayard and F. Ramos-Morales, “Salmonella type III secretion effector SlrP is an E3 ubiquitin ligase for mammalian thioredoxin,” The Journal of Biological Chemistry, vol. 284, no. 40, pp. 27587–27595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Wu, R. M. Jones, and A. S. Neish, “The Salmonella effector AvrA mediates bacterial intracellular survival during infection in vivo,” Cellular Microbiology, vol. 14, no. 1, pp. 28–39, 2011. View at Publisher · View at Google Scholar
  71. L. A. Knodler and O. Steele-Mortimer, “The Salmonella effector PipB2 affects late endosome/lysosome distribution to mediate sif extension,” Molecular Biology of the Cell, vol. 16, no. 9, pp. 4108–4123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. M. A. Brennan and B. T. Cookson, “Salmonella induces macrophage death by caspase-1-dependent necrosis,” Molecular Microbiology, vol. 38, no. 1, pp. 31–40, 2000. View at Publisher · View at Google Scholar · View at Scopus
  73. S. L. Fink and B. T. Cookson, “Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells,” Infection and Immunity, vol. 73, no. 4, pp. 1907–1916, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. B. T. Cookson and M. A. Brennan, “Pro-inflammatory programmed cell death,” Trends in Microbiology, vol. 9, no. 3, pp. 113–114, 2001. View at Google Scholar · View at Scopus
  75. D. M. Monack, W. W. Navarre, and S. Falkow, “Salmonella-induced macrophage death: the role of caspase-1 in death and inflammation,” Microbes and Infection, vol. 3, no. 14-15, pp. 1201–1212, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. A. W. M. van der Velden, M. Velasquez, and M. N. Starnbach, “Salmonella rapidly kill dendritic cells via a caspase-1-dependent mechanism,” Journal of Immunology, vol. 171, no. 12, pp. 6742–6749, 2003. View at Google Scholar · View at Scopus
  77. D. Hersh, D. M. Monack, M. R. Smith, N. Ghori, S. Falkow, and A. Zychlinsky, “The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 5, pp. 2396–2401, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. L. Franchi, A. Amer, M. Body-Malapel et al., “Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in Salmonella-infected macrophages,” Nature Immunology, vol. 7, no. 6, pp. 576–582, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. E. A. Miao, C. M. Alpuche-Aranda, M. Dors et al., “Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf,” Nature Immunology, vol. 7, no. 6, pp. 569–575, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. E. A. Miao, D. P. Mao, N. Yudkovsky et al., “Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 7, pp. 3076–3080, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Zhao, J. Yang, J. Shi, Y. N. Gong, Q. Lu et al., “The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus,” Nature, vol. 477, no. 7366, pp. 596–600, 2011. View at Publisher · View at Google Scholar
  82. Y. Qu, S. Misaghi, A. Izrael-Tomasevic, K. Newton, L. L. Gilmour et al., “Phosphorylation of NLRC4 is critical for inflammasome activation,” Nature, vol. 490, no. 7421, pp. 539–542, 2012. View at Publisher · View at Google Scholar
  83. M. C. Schlumberger and W. D. Hardt, “Salmonella type III secretion effectors: pulling the host cell's strings,” Current Opinion in Microbiology, vol. 9, no. 1, pp. 46–54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. M. K. Stewart, L. A. Cummings, M. L. Johnson, A. B. Berezow, and B. T. Cookson, “Regulation of phenotypic heterogeneity permits Salmonella evasion of the host caspase-1 inflammatory response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 51, pp. 20742–20747, 2011. View at Publisher · View at Google Scholar
  85. S. J. Libby, M. Lesnick, P. Hasegawa, E. Weidenhammer, and D. G. Guiney, “The Salmonella virulence plasmid spv genes are required for cytopathology in human,” Cellular Microbiology, vol. 2, no. 1, pp. 49–58, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. D. M. Monack, C. S. Detweiler, and S. Falkow, “Salmonella pathogenicity island 2-dependent macrophage death is mediated in part by the host cysteine protease caspase-1,” Cellular Microbiology, vol. 3, no. 12, pp. 825–837, 2001. View at Publisher · View at Google Scholar · View at Scopus
  87. A. W. M. van der Velden, S. W. Lindgren, M. J. Worley, and F. Heffron, “Salmonella pathogenicity island 1-independent induction of apoptosis in infected macrophages by Salmonella enterica serotype typhimurium,” Infection and Immunity, vol. 68, no. 10, pp. 5702–5709, 2000. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Rytkönen, J. Poh, J. Garmendia et al., “SseL, a Salmonella deubiquitinase required for macrophage killing and virulence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 9, pp. 3502–3507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Broz, K. Newton, M. Lamkanfi, S. Mariathasan, V. M. Dixit, and D. M. Monack, “Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella,” Journal of Experimental Medicine, vol. 207, no. 8, pp. 1745–1755, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. A. R. Shenoy, D. A. Wellington, P. Kumar, H. Kassa, C. J. Booth et al., “GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals,” Science, vol. 336, no. 6080, pp. 481–485, 2012. View at Google Scholar
  91. D. G. Guiney and J. Fierer, “The role of the spv genes in Salmonella pathogenesis,” Frontiers in Microbiology, vol. 2, p. 129, 2011. View at Google Scholar
  92. C. M. Pickart, “Mechanisms underlying ubiquitination,” Annual Review of Biochemistry, vol. 70, pp. 503–533, 2001. View at Publisher · View at Google Scholar · View at Scopus
  93. M. B. Metzger, V. A. Hristova, and A. M. Weissman, “HECT and RING finger families of E3 ubiquitin ligases at a glance,” Journal of Cell Science, vol. 125, pp. 531–537, 2012. View at Google Scholar
  94. V. Nagy and I. Dikic, “Ubiquitin ligase complexes: from substrate selectivity to conjugational specificity,” Biological Chemistry, vol. 391, no. 2-3, pp. 163–169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. D. Komander, M. J. Clague, and S. Urbé, “Breaking the chains: structure and function of the deubiquitinases,” Nature Reviews Molecular Cell Biology, vol. 10, no. 8, pp. 550–563, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. C. A. Collins and E. J. Brown, “Cytosol as battleground: ubiquitin as a weapon for both host and pathogen,” Trends in Cell Biology, vol. 20, no. 4, pp. 205–213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. O. Steele-Mortimer, “Exploitation of the ubiquitin system by invading bacteria,” Traffic, vol. 12, no. 2, pp. 162–169, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Kubori and J. E. Galán, “Temporal regulation of Salmonella virulence effector function by proteasome-dependent protein degradation,” Cell, vol. 115, no. 3, pp. 333–342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. L. A. Knodler, S. Winfree, D. Drecktrah, R. Ireland, and O. Steele-Mortimer, “Ubiquitination of the bacterial inositol phosphatase, SopB, regulates its biological activity at the plasma membrane,” Cellular Microbiology, vol. 11, no. 11, pp. 1652–1670, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. Y. Zhang, W. Higashide, S. Dai, D. M. Sherman, and D. Zhou, “Recognition and ubiquitination of Salmonella type III effector SopA by a ubiquitin E3 ligase, HsRMA1,” The Journal of Biological Chemistry, vol. 280, no. 46, pp. 38682–38688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. D. Y. Lin, J. Diao, and J. Chen, “Crystal structures of two bacterial HECT-like E3 ligases in complex with a human E2 reveal atomic details of pathogen-host interactions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 6, pp. 1925–1930, 2012. View at Google Scholar
  102. Y. Zhang, W. M. Higashide, B. A. McCormick, J. Chen, and D. Zhou, “The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase,” Molecular Microbiology, vol. 62, no. 3, pp. 786–793, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. C. M. Quezada, S. W. Hicks, J. E. Galán, and C. Erec Stebbins, “A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 12, pp. 4864–4869, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Haraga and S. I. Miller, “A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1,” Cellular Microbiology, vol. 8, no. 5, pp. 837–846, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. G. Le Negrate, B. Faustin, K. Welsh et al., “Salmonella secreted factor L deubiquitinase of Salmonella typhimurium inhibits NF-κB, suppresses IkBα ubiquitination and modulates innate immune responses,” Journal of Immunology, vol. 180, no. 7, pp. 5045–5056, 2008. View at Google Scholar · View at Scopus
  106. J. Sun, M. E. Hobert, A. S. Rao, A. S. Neish, and J. L. Madara, “Bacterial activation of β-catenin signaling in human epithelia,” American Journal of Physiology, vol. 287, no. 1, pp. G220–G227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. Z. Ye, E. O. Petrof, D. Boone, E. C. Claud, and J. Sun, “Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination,” American Journal of Pathology, vol. 171, no. 3, pp. 882–892, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. T. L. Thurston, M. P. Wandel, N. von Muhlinen, A. Foeglein, and F. Randow, “Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion,” Nature, vol. 482, no. 7385, pp. 414–418, 2012. View at Google Scholar
  109. A. J. Perrin, X. Jiang, C. L. Birmingham, N. S. Y. So, and J. H. Brumell, “Recognition of bacteria in the cytosol of mammalian cells by the ubiquitin system,” Current Biology, vol. 14, no. 9, pp. 806–811, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. T. L. Thurston, G. Ryzhakov, S. Bloor, N. von Muhlinen, and F. Randow, “The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria,” Nature Immunology, vol. 10, no. 11, pp. 1215–1221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. P. Wild, H. Farhan, D. G. McEwan, S. Wagner, V. V. Rogov et al., “Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth,” Science, vol. 333, no. 6039, pp. 228–233, 2011. View at Publisher · View at Google Scholar
  112. Y. T. Zheng, S. Shahnazari, A. Brech, T. Lamark, T. Johansen, and J. H. Brumell, “The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway,” Journal of Immunology, vol. 183, no. 9, pp. 5909–5916, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. L. D. Hernandez, M. Pypaert, R. A. Flavell, and J. E. Galán, “A Salmonella protein causes macrophage cell death by inducing autophagy,” Journal of Cell Biology, vol. 163, no. 5, pp. 1123–1131, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. C. L. Birmingham and J. H. Brumell, “Autophagy recognizes intracellular Salmonella enterica serovar typhimurium in damaged vacuoles,” Autophagy, vol. 2, no. 3, pp. 156–158, 2006. View at Google Scholar · View at Scopus
  115. F. S. Mesquita, M. Thomas, M. Sachse, A. J. Santos, R. Figueira et al., “The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates,” PLOS Pathogens, vol. 8, no. 6, Article ID 100274, 2012. View at Google Scholar
  116. R. G. Jenner and R. A. Young, “Insights into host responses against pathogens from transcriptional profiling,” Nature Reviews Microbiology, vol. 3, no. 4, pp. 281–294, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. C. M. Rosenberger, M. G. Scott, M. R. Gold, R. E. W. Hancock, and B. B. Finlay, “Salmonella typhimurium infection and lipopolysaccharide stimulation induce similar changes in macrophage gene expression,” Journal of Immunology, vol. 164, no. 11, pp. 5894–5904, 2000. View at Google Scholar · View at Scopus
  118. C. S. Detweiler, D. B. Cunanan, and S. Falkow, “Host microarray analysis reveals a role for the Salmonella response regulator phoP in human macrophage cell death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 10, pp. 5850–5855, 2001. View at Publisher · View at Google Scholar · View at Scopus
  119. L. Eckmann, J. R. Smith, M. P. Housley, M. B. Dwinell, and M. F. Kagnoff, “Analysis by high density cDNA arrays of altered gene expression in human intestinal epithelial cells in response to infection with the invasive enteric bacteria Salmonella,” The Journal of Biological Chemistry, vol. 275, no. 19, pp. 14084–14094, 2000. View at Publisher · View at Google Scholar · View at Scopus
  120. H. I. Chiang, C. L. Swaggerty, M. H. Kogut et al., “Gene expression profiling in chicken heterophils with Salmonella enteritidis stimulation using a chicken 44 K Agilent microarray,” BMC Genomics, vol. 9, article 526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. Y. Wang, O. P. Couture, L. Qu et al., “Analysis of porcine transcriptional response to Salmonella enterica serovar Choleraesuis suggests novel targets of NFkappaB are activated in the mesenteric lymph node,” BMC Genomics, vol. 9, article 437, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. W. Rodenburg, I. M. J. Bovee-Oudenhoven, E. Kramer, R. van der Meer, and J. Keijer, “Gene expression response of the rat small intestine following oral Salmonella infection,” Physiological Genomics, vol. 30, no. 2, pp. 123–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. S. K. Khoo, D. Petillo, M. Parida, A. C. Tan, J. H. Resau, and S. K. Obaro, “Host response transcriptional profiling reveals extracellular components and ABC (ATP-binding cassette) transporters gene enrichment in typhoid fever-infected Nigerian children,” BMC Infectious Diseases, vol. 11, p. 241, 2011. View at Google Scholar
  124. V. M. Bruno, S. Hannemann, M. Lara-Tejero, R. A. Flavell, S. H. Kleinstein, and J. E. Galán, “Salmonella typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells,” PLoS Pathogens, vol. 5, no. 8, Article ID e1000538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. S. D. Lawhon, S. Khare, C. A. Rossetti, R. E. Everts, C. L. Galindo et al., “Role of SPI-1 secreted effectors in acute bovine response to Salmonella enterica Serovar Typhimurium: a systems biology analysis approach,” PLoS ONE, vol. 6, no. 11, Article ID e26869, 2011. View at Google Scholar
  126. F. Du and J. E. Galán, “Selective inhibition of type III secretion activated signaling by the Salmonella effector AvrA,” PLoS Pathogens, vol. 5, no. 9, Article ID e1000595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. X. Liu, R. Lu, Y. Xia, S. Wu, and J. Sun, “Eukaryotic signaling pathways targeted by Salmonella effector protein AvrA in intestinal infection in vivo,” BMC Microbiology, vol. 10, p. 326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Wu, Z. Ye, X. Liu et al., “Salmonella typhimurium infection increases p53 acetylation in intestinal epithelial cells,” American Journal of Physiology, vol. 298, no. 5, pp. G784–G794, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. S. Zhang, H. S. Lillehoj, C. H. Kim, C. L. Keeler, U. Babu, and M. Z. Zhang, “Transcriptional response of chicken macrophages to Salmonella enterica serovar Enteritidis infection,” Developments in Biologicals, vol. 132, pp. 141–151, 2008. View at Google Scholar · View at Scopus
  130. I. Mellman and R. M. Steinman, “Dendritic cells: specialized and regulated antigen processing machines,” Cell, vol. 106, no. 3, pp. 255–258, 2001. View at Publisher · View at Google Scholar · View at Scopus
  131. I. Mellman, “Antigen processing and presentation by dendritic cells: cell biological mechanisms,” Advances in Experimental Medicine and Biology, vol. 560, pp. 63–67, 2005. View at Google Scholar · View at Scopus
  132. M. J. Wick, “The role of dendritic cells during Salmonella infection,” Current Opinion in Immunology, vol. 14, no. 4, pp. 437–443, 2002. View at Publisher · View at Google Scholar · View at Scopus
  133. F. G. D. Portillo, H. Jungnitz, M. Rohde, and C. A. Guzmán, “Interaction of Salmonella enterica serotype typhimurium with dendritic cells is defined by targeting to compartments lacking lysosomal membrane glycoproteins,” Infection and Immunity, vol. 68, no. 5, pp. 2985–2991, 2000. View at Publisher · View at Google Scholar · View at Scopus
  134. J. Jantsch, C. Cheminay, D. Chakravortty, T. Lindig, J. Hein, and M. Hensel, “Intracellular activities of Salmonella enterica in murine dendritic cells,” Cellular Microbiology, vol. 5, no. 12, pp. 933–945, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. F. Niedergang, J. C. Sirard, C. T. Blanc, and J. P. Kraehenbuhl, “Entry and survival of Salmonella typhimurium in dendritic cells and presentation of recombinant antigens do not require macrophage-specific virulence factors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 26, pp. 14650–14655, 2000. View at Publisher · View at Google Scholar · View at Scopus
  136. C. Cheminay, A. Möhlenbrink, and M. Hensel, “Intracellular Salmonella inhibit antigen presentation by dendritic cells,” Journal of Immunology, vol. 174, no. 5, pp. 2892–2899, 2005. View at Google Scholar · View at Scopus
  137. J. A. Tobar, L. J. Carreño, S. M. Bueno et al., “Virulent Salmonella enterica serovar typhimurium evades adaptive immunity by preventing dendritic cells from activating T cells,” Infection and Immunity, vol. 74, no. 11, pp. 6438–6448, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. S. Halici, S. F. Zenk, J. Jantsch, and M. Hensel, “Functional analysis of the Salmonella pathogenicity island 2-mediated inhibition of antigen presentation in dendritic cells,” Infection and Immunity, vol. 76, no. 11, pp. 4924–4933, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. E. K. Mitchell, P. Mastroeni, A. P. Kelly, and J. Trowsdale, “Inhibition of cell surface MHC class II expression by Salmonella,” European Journal of Immunology, vol. 34, no. 9, pp. 2559–2567, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. N. Lapaque, J. L. Hutchinson, D. C. Jones et al., “Salmonella regulates polyubiquitination and surface expression of MHC class II antigens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 14052–14057, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. M. J. Worley, K. H. L. Ching, and F. Heffron, “Salmonella SsrB activates a global regulon of horizontally acquired genes,” Molecular Microbiology, vol. 36, no. 3, pp. 749–761, 2000. View at Publisher · View at Google Scholar · View at Scopus
  142. E. A. Miao and S. I. Miller, “A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 13, pp. 7539–7544, 2000. View at Publisher · View at Google Scholar · View at Scopus
  143. K. Geddes, M. Worley, G. Niemann, and F. Heffron, “Identification of new secreted effectors in Salmonella enterica serovar typhimurium,” Infection and Immunity, vol. 73, no. 10, pp. 6260–6271, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. M. P. Sory and G. R. Cornelis, “Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells,” Molecular Microbiology, vol. 14, no. 3, pp. 583–594, 1994. View at Publisher · View at Google Scholar · View at Scopus
  145. G. S. Niemann, R. N. Brown, J. K. Gustin et al., “Discovery of novel secreted virulence factors from Salmonella enterica serovar typhimurium by proteomic analysis of culture supernatants,” Infection and Immunity, vol. 79, no. 1, pp. 33–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  146. R. Boonyom, M. H. Karavolos, D. M. Bulmer, and C. M. A. Khan, “Salmonella pathogenicity island 1 (SPI-1) type III secretion of SopD involves N- and C-terminal signals and direct binding to the InvC ATPase,” Microbiology, vol. 156, no. 6, pp. 1805–1814, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. I. Hautefort, A. Thompson, S. Eriksson-Ygberg et al., “During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems,” Cellular Microbiology, vol. 10, no. 4, pp. 958–984, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. J. E. Button and J. E. Galan, “Regulation of chaperone/effector complex synthesis in a bacterial type III secretion system,” Molecular Microbiology, vol. 81, no. 6, pp. 1474–1483, 2011. View at Publisher · View at Google Scholar
  149. M. Lara-Tejero, J. Kato, S. Wagner, X. Liu, and J. E. Galán, “A sorting platform determines the order of protein secretion in bacterial type III systems,” Science, vol. 331, no. 6021, pp. 1188–1191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. S. Schleker, J. Sun, B. Raghavan, M. Srnec, N. Muller et al., “The current Salmonella-host interactome,” PROTEOMICS - Clinical Applications, vol. 6, pp. 117–133, 2012. View at Google Scholar
  151. P. Dean, “Functional domains and motifs of bacterial type III effector proteins and their roles in infection,” FEMS Microbiology Reviews, vol. 35, no. 6, pp. 1100–1125, 2011. View at Google Scholar
  152. A. Alemán, P. Fernández-Piñar, D. Pérez-Núñez, R. Rotger, H. Martín et al., “A yeast-based genetic screen for identification of pathogenic Salmonella proteins,” FEMS Microbiology Letters, vol. 296, no. 2, pp. 167–77, 2009. View at Google Scholar
  153. I. Rodríguez-Escudero, R. Rotger, V. J. Cid, and M. Molina, “Inhibition of Cdc42-dependent signalling in Saccharomyces cerevisiae by phosphatase-dead SigD/SopB from Salmonella typhimurium,” Microbiology, vol. 152, no. 11, pp. 3437–3452, 2006. View at Publisher · View at Google Scholar · View at Scopus
  154. S. D. Auweter, A. P. Bhavsar, C. L. De Hoog et al., “Quantitative mass spectrometry catalogues Salmonella pathogenicity island-2 effectors and identifies their cognate host binding partners,” The Journal of Biological Chemistry, vol. 286, no. 27, pp. 24023–24035, 2011. View at Publisher · View at Google Scholar · View at Scopus
  155. R. Arnold, K. Boonen, M. G. Sun, and P. M. Kim, “Computational analysis of interactomes: current and future perspectives for bioinformatics approaches to model the host-pathogen interaction space,” Methods, vol. 57, no. 4, pp. 508–518, 2012. View at Google Scholar
  156. B. J. Burkinshaw, G. Prehna, L. J. Worrall, and N. C. Strynadka, “Structure of Salmonella effector protein SopB N-terminal domain in complex with host Rho GTPase Cdc42,” The Journal of Biological Chemistry, vol. 287, no. 16, pp. 13348–13355, 2012. View at Google Scholar
  157. A. Ordas, Z. Hegedus, C. V. Henkel, O. W. Stockhammer, D. Butler et al., “Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection,” Fish and Shellfish Immunology, vol. 31, no. 5, pp. 716–724, 2011. View at Google Scholar
  158. F. García-del Portillo, “Heterogeneity in tissue culture infection models: a source of novel host-pathogen interactions?” Microbes and Infection, vol. 10, no. 9, pp. 1063–1066, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. H. K. de Jong, C. M. Parry, T. van der Poll, and W. J. Wiersinga, “Host-pathogen interaction in invasive salmonellosis,” PLOS Pathogens, vol. 8, no. 10, Article ID e100293, 2012. View at Google Scholar
  160. M. E. Jennings, L. N. Quick, N. Ubol, S. Shrom, N. Dollahon et al., “Characterization of Salmonella type III secretion hyper-activity which results in biofilm-like cell aggregation,” PLoS ONE, vol. 7, no. 3, Article ID e33080, 2012. View at Google Scholar
  161. D. M. Widmaier and C. A. Voigt, “Quantification of the physiochemical constraints on the export of spider silk proteins by Salmonella type III secretion,” Microbial Cell Factories, vol. 9, article 78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. W. A. Hegazy, X. Xu, L. Metelitsa, and M. Hensel, “Evaluation of Salmonella enterica type III secretion system effector proteins as carriers for heterologous vaccine antigens,” Infection and Immunity, vol. 80, no. 3, pp. 1193–1202, 2012. View at Google Scholar
  163. N. Holden, L. Pritchard, and I. Toth, “Colonization outwith the colon: plants as an alternative environmental reservoir for human pathogenic enterobacteria: review article,” FEMS Microbiology Reviews, vol. 33, no. 4, pp. 689–703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. J. D. Barak and B. K. Schroeder, “Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants,” Annual Review of Phytopathology, vol. 50, pp. 241–266, 2012. View at Google Scholar
  165. A. Schikora, A. V. Garcia, and H. Hirt, “Plants as alternative hosts for Salmonella,” Trends in Plant Science, vol. 17, no. 5, pp. 245–249, 2012. View at Google Scholar
  166. M. M. Klerks, M. Van Gent-Pelzer, E. Franz, C. Zijlstra, and A. H. C. van Bruggen, “Physiological and molecular responses of Lactuca sativa to colonization by Salmonella enterica serovar Dublin,” Applied and Environmental Microbiology, vol. 73, no. 15, pp. 4905–4914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  167. A. Schikora, A. Carreri, E. Charpentier, and H. Hirt, “The dark side of the salad: Salmonella typhimurium overcomes the innate immune response of arabidopsis thaliana and shows an endopathogenic lifestyle,” PLoS ONE, vol. 3, no. 5, Article ID e2279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  168. J. D. G. Jones and J. L. Dangl, “The plant immune system,” Nature, vol. 444, no. 7117, pp. 323–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  169. A. L. Iniguez, Y. Dong, H. D. Carter, B. M. M. Ahmer, J. M. Stone, and E. W. Triplett, “Regulation of enteric endophytic bacterial colonization by plant defenses,” Molecular Plant-Microbe Interactions, vol. 18, no. 2, pp. 169–178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  170. A. Schikora, I. Virlogeux-Payant, E. Bueso, A. V. Garcia, T. Nilau et al., “Conservation of Salmonella infection mechanisms in plants and animals,” PLoS ONE, vol. 6, no. 9, Article ID e24112, 2011. View at Google Scholar
  171. N. Shirron and S. Yaron, “Active suppression of early immune response in tobacco by the human pathogen Salmonella typhimurium,” PLoS ONE, vol. 6, no. 4, Article ID e18855, 2011. View at Publisher · View at Google Scholar · View at Scopus
  172. J. D. Barak, L. C. Kramer, and L. Y. Hao, “Colonization of tomato plants by Salmonella enterica is cultivar dependent, and type trichomes are preferred colonization sites,” Applied and Environmental Microbiology, vol. 77, no. 2, pp. 498–504, 2011. View at Publisher · View at Google Scholar · View at Scopus
  173. S. Ustun, P. Muller, R. Palmisano, M. Hensel, and F. Bornke, “SseF, a type III effector protein from the mammalian pathogen Salmonella enterica, requires resistance-gene-mediated signalling to activate cell death in the model plant Nicotiana benthamiana,” New Phytologist, vol. 194, no. 4, pp. 1046–1060, 2012. View at Google Scholar
  174. W. D. Hardt and J. E. Galán, “A secreted Salmonella protein with homology to an avirulence determinant of plant pathogenic bacteria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 18, pp. 9887–9892, 1997. View at Publisher · View at Google Scholar · View at Scopus
  175. L. S. Collier-Hyams, H. Zeng, J. Sun et al., “Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-κB pathway,” Journal of Immunology, vol. 169, no. 6, pp. 2846–2850, 2002. View at Google Scholar · View at Scopus
  176. R. M. Jones, H. Wu, C. Wentworth, L. Luo, L. Collier-Hyams, and A. S. Neish, “Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade,” Cell Host & Microbe, vol. 3, no. 4, pp. 233–244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  177. X. Liu, R. Lu, S. Wu, and J. Sun, “Salmonella regulation of intestinal stem cells through the Wnt/β-catenin pathway,” FEBS Letters, vol. 584, no. 5, pp. 911–916, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. X. Liu, R. Lu, S. Wu et al., “Wnt2 inhibits enteric bacterial-induced inflammation in intestinal epithelial cells,” Inflammatory Bowel Diseases, vol. 18, no. 3, pp. 418–429, 2012. View at Publisher · View at Google Scholar · View at Scopus
  179. R. Mittal, S. Y. Peak-Chew, R. S. Sade, Y. Vallis, and H. T. McMahon, “The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate,” The Journal of Biological Chemistry, vol. 285, no. 26, pp. 19927–19934, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. R. Lu, X. Liu, S. Wu, Y. Xia, Y. G. Zhang et al., “Consistent activation of the β-catenin pathway by Salmonella type-three secretion effector protein AvrA in chronically infected intestine,” American Journal of Physiology, vol. 303, no. 10, pp. G1113–G1125, 2012. View at Publisher · View at Google Scholar
  181. N. Figueroa-Bossi, S. Uzzau, D. Maloriol, and L. Bossi, “Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella,” Molecular Microbiology, vol. 39, no. 2, pp. 260–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  182. B. K. Coombes, M. E. Wickham, N. F. Brown et al., “Genetic and molecular analysis of GogB, a phage-encoded type III-secreted substrate in Salmonella enterica serovar typhimurium with autonomous expression from its associated phage,” Journal of Molecular Biology, vol. 348, no. 4, pp. 817–830, 2005. View at Publisher · View at Google Scholar · View at Scopus
  183. A. V. C. Pilar, S. A. Reid-Yu, C. A. Cooper, D. T. Mulder, and B. K. Coombes, “GogB is an anti-inflammatory effector that limits tissue damage during Salmonella infection through interaction with human FBXO22 and Skp1,” PLOS Pathogens, vol. 8, no. 6, Article ID e1002773, 2012. View at Publisher · View at Google Scholar
  184. M. W. Wood, M. A. Jones, P. R. Watson, S. Hedges, T. S. Wallis, and E. E. Galyov, “Identification of a pathogenicity island required for Salmonella enteropathogenicity,” Molecular Microbiology, vol. 29, no. 3, pp. 883–891, 1998. View at Publisher · View at Google Scholar · View at Scopus
  185. C. G. Pfeifer, S. L. Marcus, O. Steele-Mortimer, L. A. Knodler, and B. B. Finlay, “Salmonella typhimurium virulence genes are induced upon bacterial invasion into phagocytic and nonphagocytic cells,” Infection and Immunity, vol. 67, no. 11, pp. 5690–5698, 1999. View at Google Scholar · View at Scopus
  186. L. A. Knodler, J. Celli, W. D. Hardt, B. A. Vallance, C. Yip, and B. B. Finlay, “Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems,” Molecular Microbiology, vol. 43, no. 5, pp. 1089–1103, 2002. View at Publisher · View at Google Scholar · View at Scopus
  187. F. Garcia-del Portillo, M. B. Zwick, Ka Yin Leung, and B. B. Finlay, “Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 22, pp. 10544–10548, 1993. View at Publisher · View at Google Scholar · View at Scopus
  188. L. A. Knodler, B. A. Vallance, M. Hensel, D. Jäckel, B. B. Finlay, and O. Steele-Mortimer, “Salmonella type III effectors PipB and PipB2 are targeted to detergent-resistant microdomains on internal host cell membranes,” Molecular Microbiology, vol. 49, no. 3, pp. 685–704, 2003. View at Publisher · View at Google Scholar · View at Scopus
  189. E. Morgan, J. D. Campbell, S. C. Rowe et al., “Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium,” Molecular Microbiology, vol. 54, no. 4, pp. 994–1010, 2004. View at Publisher · View at Google Scholar · View at Scopus
  190. S. Li, Z. Zhang, L. Pace, H. Lillehoj, and S. Zhang, “Functions exerted by the virulence-associated type-three secretion systems during Salmonella enterica serovar Enteritidis invasion into and survival within chicken oviduct epithelial cells and macrophages,” Avian Pathology, vol. 38, no. 2, pp. 97–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  191. K. L. Ebers, C. Y. Zhang, M. Z. Zhang, R. H. Bailey, and S. Zhang, “Transcriptional profiling avian beta-defensins in chicken oviduct epithelial cells before and after infection with Salmonella enterica serovar Enteritidis,” BMC Microbiology, vol. 9, article 153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  192. S. Li, M. Z. Zhang, L. Yan, H. Lillehoj, L. W. Pace, and S. Zhang, “Induction of CXC chemokine messenger-RNA expression in chicken oviduct epithelial cells by Salmonella enterica serovar enteritidis via the type three secretion system-1,” Avian Diseases, vol. 53, no. 3, pp. 396–404, 2009. View at Publisher · View at Google Scholar · View at Scopus
  193. L. A. Knodler and O. Steele-Mortimer, “Taking possession: biogenesis of the Salmonella-containing vacuole,” Traffic, vol. 4, no. 9, pp. 587–599, 2003. View at Publisher · View at Google Scholar · View at Scopus
  194. S. Eriksson, S. Lucchini, A. Thompson, M. Rhen, and J. C. D. Hinton, “Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica,” Molecular Microbiology, vol. 47, no. 1, pp. 103–118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  195. T. Henry, C. Couillault, P. Rockenfeller et al., “The Salmonella effector protein PipB2 is a linker for kinesin-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 36, pp. 13497–13502, 2006. View at Publisher · View at Google Scholar · View at Scopus
  196. F. Baison-Olmo, E. Cardenal-Munoz, and F. Ramos-Morales, “PipB2 is a substrate of the Salmonella pathogenicity island 1-encoded type III secretion system,” Biochemical and Biophysical Research Communications, vol. 423, no. 2, pp. 240–246, 2012. View at Google Scholar
  197. M. A. Stein, K. Y. Leung, M. Zwick, F. Garcia-del Portillo, and B. B. Finlay, “Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells,” Molecular Microbiology, vol. 20, no. 1, pp. 151–164, 1996. View at Publisher · View at Google Scholar · View at Scopus
  198. C. R. Beuzon, S. Meresse, K. E. Unsworth et al., “Salmonella maintains the integrity of its intracellular vacuole through the action of SifA,” The EMBO Journal, vol. 19, no. 13, pp. 3235–3249, 2000. View at Publisher · View at Google Scholar
  199. J. H. Brumell, C. M. Rosenberger, G. T. Gotto, S. L. Marcus, and B. B. Finlay, “SifA permits survival and replication of Salmonella typhimurium in murine macrophages,” Cellular Microbiology, vol. 3, no. 2, pp. 75–84, 2001. View at Publisher · View at Google Scholar · View at Scopus
  200. I. Hansen-Wester, B. Stecher, and M. Hensel, “Type III secretion of Salmonella enterica serovar typhimurium translocated effectors and SseFG,” Infection and Immunity, vol. 70, no. 3, pp. 1403–1409, 2002. View at Publisher · View at Google Scholar · View at Scopus
  201. C. R. Beuzón, S. P. Salcedo, and D. W. Holden, “Growth and killing of a Salmonella enterica serovar Typhimurium sifA mutant strain in the cytosol of different host cell lines,” Microbiology, vol. 148, no. 9, pp. 2705–2715, 2002. View at Google Scholar · View at Scopus
  202. J. H. Brumell, D. L. Goosney, and B. B. Finlay, “SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules,” Traffic, vol. 3, no. 6, pp. 407–415, 2002. View at Publisher · View at Google Scholar · View at Scopus
  203. J. Guignot, E. Caron, C. Beuzón et al., “Microtubule motors control membrane dynamics of Salmonella-containing vacuoles,” Journal of Cell Science, vol. 117, no. 7, pp. 1033–1045, 2004. View at Publisher · View at Google Scholar · View at Scopus
  204. R. E. Harrison, J. H. Brumell, A. Khandani et al., “Salmonella impairs RILP recruitment to Rab7 during maturation of invasion vacuoles,” Molecular Biology of the Cell, vol. 15, no. 7, pp. 3146–3154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  205. J. H. Brumell, P. Tang, M. L. Zaharik, and B. B. Finlay, “Disruption of the Salmonella-containing vacuole leads to increased replication of Salmonella enterica serovar typhimurium in the cytosol of epithelial cells,” Infection and Immunity, vol. 70, no. 6, pp. 3264–3270, 2002. View at Publisher · View at Google Scholar · View at Scopus
  206. E. A. Roark and K. Haldar, “Effects of lysosomal membrane protein depletion on the Salmonella-containing vacuole,” PLoS ONE, vol. 3, no. 10, Article ID e3538, 2008. View at Publisher · View at Google Scholar · View at Scopus
  207. J. Ruiz-Albert, X. J. Yu, C. R. Beuzón, A. N. Blakey, E. E. Galyov, and D. W. Holden, “Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane,” Molecular Microbiology, vol. 44, no. 3, pp. 645–661, 2002. View at Publisher · View at Google Scholar · View at Scopus
  208. E. Boucrot, C. R. Beuzón, D. W. Holden, J. P. Gorvel, and S. Méresse, “Salmonella typhimurium SifA effector protein requires its membrane-anchoring C-terminal hexapeptide for its biological function,” The Journal of Biological Chemistry, vol. 278, no. 16, pp. 14196–14202, 2003. View at Publisher · View at Google Scholar · View at Scopus
  209. A. T. Reinicke, J. L. Hutchinson, A. I. Magee, P. Mastroeni, J. Trowsdale, and A. P. Kelly, “A Salmonella typhimurium effector Protein SifA is modified by host cell prenylation and S-acylation machinery,” The Journal of Biological Chemistry, vol. 280, no. 15, pp. 14620–14627, 2005. View at Publisher · View at Google Scholar · View at Scopus
  210. E. Boucrot, T. Henry, J. P. Borg, J. P. Gorvel, and S. Méresse, “The intracellular fate of Salmonella depends on the recruitment of kinesin,” Science, vol. 308, no. 5725, pp. 1174–1178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  211. L. Diacovich, A. Dumont, D. Lafitte et al., “Interaction between the SifA virulence factor and its host target SKIP is essential for Salmonella pathogenesis,” The Journal of Biological Chemistry, vol. 284, no. 48, pp. 33151–33160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  212. M. B. Ohlson, Z. Huang, N. M. Alto et al., “Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation,” Cell Host & Microbe, vol. 4, no. 5, pp. 434–446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  213. A. Dumont, E. Boucrot, S. Drevensek et al., “SKIP, the host target of the Salmonella virulence factor SifA, promotes kinesin-1-dependent vacuolar membrane exchanges,” Traffic, vol. 11, no. 7, pp. 899–911, 2010. View at Publisher · View at Google Scholar · View at Scopus
  214. N. M. Alto, F. Shao, C. S. Lazar et al., “Identification of a bacterial type III effector family with G protein mimicry functions,” Cell, vol. 124, no. 1, pp. 133–145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  215. R. C. Orchard and N. M. Alto, “Mimicking GEFs: a common theme for bacterial pathogens,” Cellular Microbiology, vol. 14, no. 1, pp. 10–18, 2012. View at Google Scholar
  216. D. B. N. Vinh, D. C. Ko, R. A. Rachubinski, J. D. Aitchison, and S. I. Miller, “Expression of the Salmonella spp. virulence factor SifA in yeast alters Rho1 activity on peroxisomes,” Molecular Biology of the Cell, vol. 21, no. 20, pp. 3567–3577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  217. A. Arbeloa, J. Garnett, J. Lillington et al., “EspM2 is a RhoA guanine nucleotide exchange factor,” Cellular Microbiology, vol. 12, no. 5, pp. 654–664, 2010. View at Publisher · View at Google Scholar · View at Scopus
  218. L. K. Jackson, P. Nawabi, C. Hentea, E. A. Roark, and K. Haldar, “The Salmonella virulence protein SifA is a G protein antagonist,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 37, pp. 14141–14146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  219. J. A. Freeman, M. E. Ohl, and S. I. Miller, “The Salmonella enterica serovar typhimurium translocated effectors SseJ and SifB are targeted to the Salmonella-containing vacuole,” Infection and Immunity, vol. 71, no. 1, pp. 418–427, 2003. View at Publisher · View at Google Scholar · View at Scopus
  220. K. Kaniga, D. Trollinger, and J. E. Galan, “Identification of two targets of the type III protein secretion system encoded by the inv and spa loci of Salmonella typhimurium that have homology to the Shigella IpaD and IpaA proteins,” Journal of Bacteriology, vol. 177, no. 24, pp. 7078–7085, 1995. View at Google Scholar · View at Scopus
  221. M. A. Jepson, B. Kenny, and A. D. Leard, “Role of sipA in the early stages of Salmonella typhimurium entry into epithelial cells,” Cellular Microbiology, vol. 3, no. 6, pp. 417–426, 2001. View at Publisher · View at Google Scholar · View at Scopus
  222. M. Raffatellu, Y. H. Sun, R. P. Wilson et al., “Host restriction of Salmonella enterica serotype typhi is not caused by functional alteration of SipA, SopB, or SopB,” Infection and Immunity, vol. 73, no. 12, pp. 7817–7826, 2005. View at Publisher · View at Google Scholar · View at Scopus
  223. M. C. Schlumberger, R. Käppeli, M. Wetter et al., “Two newly identified SipA domains (F1, F2) steer effector protein localization and contribute to Salmonella host cell manipulation,” Molecular Microbiology, vol. 65, no. 3, pp. 741–760, 2007. View at Google Scholar
  224. C. A. Lee, M. Silva, A. M. Siber, A. J. Kelly, E. Galyov, and B. A. McCormick, “A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 22, pp. 12283–12288, 2000. View at Publisher · View at Google Scholar · View at Scopus
  225. M. Silva, C. Song, W. J. Nadeau, J. B. Matthews, and B. A. McCormick, “Salmonella typhimurium SipA-induced neutrophil transepithelial migration: involvement of a PKC-α-dependent signal transduction pathway,” American Journal of Physiology, vol. 286, no. 6, pp. G1024–G1031, 2004. View at Publisher · View at Google Scholar · View at Scopus
  226. D. M. Wall, W. J. Nadeau, M. A. Pazos, H. N. Shi, E. E. Galyov, and B. A. Mccormick, “Identification of the Salmonella enterica serotype Typhimurium SipA domain responsible for inducing neutrophil recruitment across the intestinal epithelium,” Cellular Microbiology, vol. 9, no. 9, pp. 2299–2313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  227. T. A. Agbor, Z. C. Demma, K. L. Mumy, J. D. Bien, and B. A. McCormick, “The ERM protein, ezrin, regulates neutrophil transmigration by modulating the apical localization of MRP2 in response to the SipA effector protein during Salmonella typhimurium infection,” Cellular Microbiology, vol. 13, no. 12, pp. 2007–2021, 2011. View at Publisher · View at Google Scholar
  228. S. Hapfelmeier, K. Ehrbar, B. Stecher, M. Barthel, M. Kremer, and W. D. Hardt, “Role of the Salmonella pathogenicity island 1 effector proteins SipA, SopB, SopE, and SopE2 in Salmonella enterica subspecies 1 serovar Typhimurium colitis in streptomycin-pretreated mice,” Infection and Immunity, vol. 72, no. 2, pp. 795–809, 2004. View at Publisher · View at Google Scholar · View at Scopus
  229. S. Zhang, R. L. Santos, R. M. Tsolis et al., “The Salmonella enterica serotype Typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves,” Infection and Immunity, vol. 70, no. 7, pp. 3843–3855, 2002. View at Publisher · View at Google Scholar · View at Scopus
  230. A. M. Keestra, M. G. Winter, D. Klein-Douwel, M. N. Xavier, S. E. Winter et al., “A Salmonella virulence factor activates the NOD1/NOD2 signaling pathway,” mBio, vol. 2, no. 6, Article ID e00266-11, 2011. View at Publisher · View at Google Scholar
  231. J. F. Figueiredo, S. D. Lawhon, K. Gokulan et al., “Salmonella enterica Typhimurium SipA induces CXC-chemokine expression through p38MAPK and JUN pathways,” Microbes and Infection, vol. 11, no. 2, pp. 302–310, 2009. View at Publisher · View at Google Scholar · View at Scopus
  232. L. C. Brawn, R. D. Hayward, and V. Koronakis, “Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication,” Cell Host & Microbe, vol. 1, no. 1, pp. 63–75, 2007. View at Publisher · View at Google Scholar · View at Scopus
  233. M. N. Giacomodonato, S. Uzzau, D. Bacciu et al., “SipA, SopA, SopB, SopD, and SopE2 effector proteins of Salmonella enterica serovar Typhimurium are synthesized at late stages of infection in mice,” Microbiology, vol. 153, no. 4, pp. 1221–1228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  234. D. Hermant, R. Menard, N. Arricau, C. Parsot, and M. Y. Popoff, “Functional conservation of the Salmonella and Shigella effectors of entry into epithelial cells,” Molecular Microbiology, vol. 17, no. 4, pp. 781–789, 1995. View at Google Scholar · View at Scopus
  235. K. Kaniga, S. Tucker, D. Trollinger, and J. E. Galan, “Homologs of the Shigella IpaB and IpaC invasins are required for Salmonella typhimurium entry into cultured epithelial cells,” Journal of Bacteriology, vol. 177, no. 14, pp. 3965–3971, 1995. View at Google Scholar · View at Scopus
  236. C. M. Collazo and J. E. Galán, “The invasion-associated type III system of Salmonella typhimurium directs the translocation of Sip proteins into the host cell,” Molecular Microbiology, vol. 24, no. 4, pp. 747–756, 1997. View at Google Scholar · View at Scopus
  237. M. Lara-Tejero and J. E. Galán, “Salmonella enterica serovar Typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells,” Infection and Immunity, vol. 77, no. 7, pp. 2635–2642, 2009. View at Publisher · View at Google Scholar · View at Scopus
  238. S. Chatterjee, D. Zhong, B. A. Nordhues, K. P. Battaile, S. Lovell, and R. N. De Guzman, “The crystal structures of the Salmonella type III secretion system tip protein SipD in complex with deoxycholate and chenodeoxycholate,” Protein Science, vol. 20, no. 1, pp. 75–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  239. M. Lunelli, R. Hurwitz, J. Lambers, and M. Kolbe, “Crystal structure of PrgI-SipD: insight into a secretion competent state of the type three secretion system needle tip and its interaction with host ligands,” PLOS Pathogens, vol. 7, no. 8, Article ID e1002163, 2011. View at Google Scholar
  240. Y. Wang, B. A. Nordhues, D. Zhong, and R. N. De Guzman, “NMR characterization of the interaction of the Salmonella type III secretion system protein SipD and bile salts,” Biochemistry, vol. 49, no. 19, pp. 4220–4226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  241. A. M. Prouty and J. S. Gunn, “Salmonella enterica serovar typhimurium invasion is repressed in the presence of bile,” Infection and Immunity, vol. 68, no. 12, pp. 6763–6769, 2000. View at Publisher · View at Google Scholar · View at Scopus
  242. D. Dreher, M. Kok, C. Obregon, S. G. Kiama, P. Gehr, and L. P. Nicod, “Salmonella virulence factor SipB induces activation and release of IL-18 in human dendritic cells,” Journal of Leukocyte Biology, vol. 72, no. 4, pp. 743–751, 2002. View at Google Scholar · View at Scopus
  243. C. Obregon, D. Dreher, M. Kok, L. Cochand, G. S. Kiama, and L. P. Nicod, “Human alveolar macrophages infected by virulent bacteria expressing SipB are a major source of active interleukin-18,” Infection and Immunity, vol. 71, no. 8, pp. 4382–4388, 2003. View at Publisher · View at Google Scholar · View at Scopus
  244. R. D. Hayward and V. Koronakis, “Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella,” The EMBO Journal, vol. 18, no. 18, pp. 4926–4934, 1999. View at Publisher · View at Google Scholar · View at Scopus
  245. S. A. Carlson, M. B. Omary, and B. D. Jones, “Identification of cytokeratins as accessory mediators of Salmonella entry into eukaryotic cells,” Life Sciences, vol. 70, no. 12, pp. 1415–1426, 2002. View at Publisher · View at Google Scholar · View at Scopus
  246. C. A. Scherer, E. Cooper, and S. I. Miller, “The Salmonella type III secretion translocon protein SspC is inserted into the epithelial cell plasma membrane upon infection,” Molecular Microbiology, vol. 37, no. 5, pp. 1133–1145, 2000. View at Publisher · View at Google Scholar · View at Scopus
  247. R. Madan, R. Rastogi, S. Parashuraman, and A. Mukhopadhyay, “Salmonella acquires lysosome-associated membrane protein 1 (LAMP1) on phagosomes from Golgi via SipC protein-mediated recruitment of host Syntaxin6,” The Journal of Biological Chemistry, vol. 287, no. 8, pp. 5574–5587, 2012. View at Google Scholar
  248. R. M. Tsolis, L. G. Adams, T. A. Ficht, and A. J. Bäumler, “Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves,” Infection and Immunity, vol. 67, no. 9, pp. 4879–4885, 1999. View at Google Scholar · View at Scopus
  249. E. A. Miao, C. A. Scherer, R. M. Tsolis et al., “Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPl1 and SPl2 type III secretion systems,” Molecular Microbiology, vol. 34, no. 4, pp. 850–864, 1999. View at Google Scholar · View at Scopus
  250. B. Kobe and A. V. Kajava, “The leucine-rich repeat as a protein recognition motif,” Current Opinion in Structural Biology, vol. 11, no. 6, pp. 725–732, 2001. View at Publisher · View at Google Scholar · View at Scopus
  251. J. R. Rohde, A. Breitkreutz, A. Chenal, P. J. Sansonetti, and C. Parsot, “Type III secretion effectors of the IpaH family are E3 ubiquitin ligases,” Cell Host & Microbe, vol. 1, no. 1, pp. 77–83, 2007. View at Publisher · View at Google Scholar · View at Scopus
  252. A. U. Singer, J. R. Rohde, R. Lam et al., “Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases,” Nature Structural and Molecular Biology, vol. 15, no. 12, pp. 1293–1301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  253. Y. Zhu, H. Li, L. Hu et al., “Structure of a Shigella effector reveals a new class of ubiquitin ligases,” Nature Structural and Molecular Biology, vol. 15, no. 12, pp. 1302–1308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  254. M. W. Wood, M. A. Jones, P. R. Watson et al., “The secreted effector protein of Salmonella dublin, SopA, is translocated into eukaryotic cells and influences the induction of enteritis,” Cellular Microbiology, vol. 2, no. 4, pp. 293–303, 2000. View at Publisher · View at Google Scholar · View at Scopus
  255. A. N. Layton, P. J. Brown, and E. E. Galyov, “The Salmonella translocated effector SopA is targeted to the mitochondria of infected cells,” Journal of Bacteriology, vol. 187, no. 10, pp. 3565–3571, 2005. View at Publisher · View at Google Scholar · View at Scopus
  256. M. Raffatellu, R. P. Wilson, D. Chessa et al., “SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium invasion of epithelial cells,” Infection and Immunity, vol. 73, no. 1, pp. 146–154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  257. J. Diao, Y. Zhang, J. M. Huibregtse, D. Zhou, and J. Chen, “Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase,” Nature Structural and Molecular Biology, vol. 15, no. 1, pp. 65–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  258. K. H. Hong and V. L. Miller, “Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE,” Journal of Bacteriology, vol. 180, no. 7, pp. 1793–1802, 1998. View at Google Scholar · View at Scopus
  259. E. E. Galyov, M. W. Wood, R. Rosqvist et al., “A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa,” Molecular Microbiology, vol. 25, no. 5, pp. 903–912, 1997. View at Google Scholar · View at Scopus
  260. F. A. Norris, M. P. Wilson, T. S. Wallis, E. E. Galyov, and P. W. Majerus, “SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 24, pp. 14057–14059, 1998. View at Publisher · View at Google Scholar · View at Scopus
  261. S. L. Marcus, M. R. Wenk, O. Steele-Mortimer, and B. B. Finlay, “A synaptojanin-homologous region of Salmonella typhimurium SigD is essential for inositol phosphatase activity and Akt activation,” FEBS Letters, vol. 494, no. 3, pp. 201–207, 2001. View at Publisher · View at Google Scholar · View at Scopus
  262. D. Zhou, L. M. Chen, L. Hernandez, S. B. Shears, and J. E. Galán, “A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization,” Molecular Microbiology, vol. 39, no. 2, pp. 248–259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  263. L. D. Hernandez, K. Hueffer, M. R. Wenk, and J. E. Galán, “Salmonella modulates vesicular traffic by altering phosphoinositide metabolism,” Science, vol. 304, no. 5678, pp. 1805–1807, 2004. View at Publisher · View at Google Scholar · View at Scopus
  264. L. A. Knodler, B. Finlay, and O. Steele-Mortimer, “The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt,” The Journal of Biological Chemistry, vol. 280, no. 10, pp. 9058–9064, 2005. View at Publisher · View at Google Scholar · View at Scopus
  265. L. D. Rogers, N. F. Brown, Y. Fang, S. Pelech, and L. J. Foster, “Phosphoproteomic analysis of Salmonella-infected cells identifies key kinase regulators and SopB-dependent host phosphorylation events,” Science Signaling, vol. 4, no. 191, p. rs9, 2011. View at Google Scholar
  266. L. S. Bertelsen, G. Paesold, S. L. Marcus, B. B. Finlay, L. Eckmann, and K. E. Barrett, “Modulation of chloride secretory responses and barrier function of intestinal epithelial cells by the Salmonella effector protein SigD,” American Journal of Physiology, vol. 287, no. 4, pp. C939–C948, 2004. View at Publisher · View at Google Scholar · View at Scopus
  267. A. Alemán, I. Rodríguez-Escudero, G. V. Mallo, V. J. Cid, M. Molina, and R. Rotger, “The amino-terminal non-catalytic region of Salmonella typhimurium SigD affects actin organization in yeast and mammalian cells,” Cellular Microbiology, vol. 7, no. 10, pp. 1432–1446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  268. L. D. Rogers, A. R. Kristensen, E. C. Boyle et al., “Identification of cognate host targets and specific ubiquitylation sites on the Salmonella SPI-1 effector SopB/SigD,” Journal of Proteomics, vol. 71, no. 1, pp. 97–108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  269. I. Rodríguez-Escudero, N. L. Ferrer, R. Rotger, V. J. Cid, and M. Molina, “Interaction of the Salmonella typhimurium effector protein SopB with host cell Cdc42 is involved in intracellular replication,” Molecular Microbiology, vol. 80, no. 5, pp. 1220–1240, 2011. View at Publisher · View at Google Scholar · View at Scopus
  270. S. L. Marcus, L. A. Knodler, and B. B. Finlay, “Salmonella enterica serovar Typhimurium effector SigD/SopB is membrane-associated and ubiquitinated inside host cells,” Cellular Microbiology, vol. 4, no. 7, pp. 435–446, 2002. View at Publisher · View at Google Scholar · View at Scopus
  271. J. C. Patel, K. Hueffer, T. T. Lam, and J. E. Galán, “Diversification of a Salmonella virulence protein function by ubiquitin-dependent differential localization,” Cell, vol. 137, no. 2, pp. 283–294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  272. J. H. Brumell, S. Kujat-Choy, N. F. Brown, B. A. Vallance, L. A. Knodler, and B. B. Finlay, “SopD2 is a novel type III secreted effector of Salmonella typhimurium that targets late endocytic compartments upon delivery into host cells,” Traffic, vol. 4, no. 1, pp. 36–48, 2003. View at Google Scholar
  273. M. A. Jones, M. W. Wood, P. B. Mullan, P. R. Watson, T. S. Wallis, and E. E. Galyov, “Secreted effector proteins of Salmonella dublin act in concert to induce enteritis,” Infection and Immunity, vol. 66, no. 12, pp. 5799–5804, 1998. View at Google Scholar · View at Scopus
  274. M. A. Bakowski, J. T. Cirulis, N. F. Brown, B. B. Finlay, and J. H. Brumell, “SopD acts cooperatively with SopB during Salmonella enterica serovar Typhimurium invasion,” Cellular Microbiology, vol. 9, no. 12, pp. 2839–2855, 2007. View at Publisher · View at Google Scholar · View at Scopus
  275. X. Jiang, O. W. Rossanese, N. F. Brown et al., “The related effector proteins SopD and SopD2 from Salmonella enterica serovar Typhimurium contribute to virulence during systemic infection of mice,” Molecular Microbiology, vol. 54, no. 5, pp. 1186–1198, 2004. View at Publisher · View at Google Scholar · View at Scopus
  276. M. W. Wood, R. Rosqvist, P. B. Mullan, M. H. Edwards, and E. E. Galyov, “SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry,” Molecular Microbiology, vol. 22, no. 2, pp. 327–338, 1996. View at Google Scholar · View at Scopus
  277. R. J. Cain, R. D. Hayward, and V. Koronakis, “The target cell plasma membrane is a critical interface for Salmonella cell entry effector-host interplay,” Molecular Microbiology, vol. 54, no. 4, pp. 887–904, 2004. View at Publisher · View at Google Scholar · View at Scopus
  278. M. G. Rudolph, C. Weise, S. Mirold et al., “Biochemical analysis of SopE from Salmonella typhimurium, a highly efficient guanosine nucleotide exchange factor for RhoGTPases,” The Journal of Biological Chemistry, vol. 274, no. 43, pp. 30501–30509, 1999. View at Publisher · View at Google Scholar · View at Scopus
  279. D. Humphreys, A. Davidson, P. J. Hume, and V. Koronakis, “Salmonella virulence effector SopE and Host GEF ARNO cooperate to recruit and activate WAVE to trigger bacterial invasion,” Cell Host & Microbe, vol. 11, no. 2, pp. 129–139, 2012. View at Google Scholar
  280. A. J. Müller, C. Hoffmann, M. Galle et al., “The S. typhimurium effector SopE induces caspase-1 activation in stromal cells to initiate gut inflammation,” Cell Host & Microbe, vol. 6, no. 2, pp. 125–136, 2009. View at Publisher · View at Google Scholar · View at Scopus
  281. W. D. Hardt, H. Urlaub, and J. E. Galán, “A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 5, pp. 2574–2579, 1998. View at Publisher · View at Google Scholar · View at Scopus
  282. S. Mirold, W. Rabsch, M. Rohde et al., “Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 17, pp. 9845–9850, 1999. View at Publisher · View at Google Scholar · View at Scopus
  283. K. Ehrbar and W. D. Hardt, “Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium,” Infection, Genetics and Evolution, vol. 5, no. 1, pp. 1–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  284. C. A. Lopez, S. E. Winter, F. Rivera-Chávez et al., “Phage-mediated acquisition of a type III secreted effector protein boosts growth of Salmonella by nitrate respiration,” mBio, vol. 3, no. 3, Article ID e00143-12, 2012. View at Publisher · View at Google Scholar
  285. C. S. Bakshi, V. P. Singh, M. W. Wood, P. W. Jones, T. S. Wallis, and E. E. Galyov, “Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells,” Journal of Bacteriology, vol. 182, no. 8, pp. 2341–2344, 2000. View at Publisher · View at Google Scholar · View at Scopus
  286. A. Friebel, H. Ilchmann, M. Aepfelbacher, K. Ehrbar, W. Machleidt, and W. D. Hardt, “SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell,” The Journal of Biological Chemistry, vol. 276, no. 36, pp. 34035–34040, 2001. View at Publisher · View at Google Scholar · View at Scopus
  287. B. J. Cherayil, B. A. McCormick, and J. Bosley, “Salmonella enterica serovar typhimurium-dependent regulation of inducible nitric oxide synthase expression in macrophages by invasins SipB, SipC, and SipD and effector SopE2,” Infection and Immunity, vol. 68, no. 10, pp. 5567–5574, 2000. View at Publisher · View at Google Scholar · View at Scopus
  288. F. C. Huang, A. Werne, Q. Li, E. E. Galyov, W. A. Walker, and B. J. Cherayil, “Cooperative interactions between flagellin and SopE2 in the epithelial interleukin-8 response to Salmonella enterica serovar typhimurium infection,” Infection and Immunity, vol. 72, no. 9, pp. 5052–5062, 2004. View at Publisher · View at Google Scholar · View at Scopus
  289. M. Hensel, J. E. Shea, S. R. Waterman et al., “Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages,” Molecular Microbiology, vol. 30, no. 1, pp. 163–174, 1998. View at Publisher · View at Google Scholar · View at Scopus
  290. K. I. Uchiya, M. A. Barbieri, K. Funato, A. H. Shah, P. D. Stahl, and E. A. Groisman, “A Salmonella virulence protein that inhibits cellular trafficking,” The EMBO Journal, vol. 18, no. 14, pp. 3924–3933, 1999. View at Publisher · View at Google Scholar · View at Scopus
  291. A. H. Lee, M. P. Zareei, and S. Daefler, “Identification of a NIPSNAP homologue as host cell target for Salmonella virulence protein SpiC,” Cellular Microbiology, vol. 4, no. 11, pp. 739–750, 2002. View at Publisher · View at Google Scholar · View at Scopus
  292. Y. Shotland, H. Krämer, and E. A. Groisman, “The Salmonella SpiC protein targets the mammalian Hook3 protein function to alter cellular trafficking,” Molecular Microbiology, vol. 49, no. 6, pp. 1565–1576, 2003. View at Publisher · View at Google Scholar · View at Scopus
  293. C. Buechler, M. Bodzioch, S. M. Bared et al., “Expression pattern and raft association of NIPSNAP3 and NIPSNAP4, highly homologous proteins encoded by genes in close proximity to the ATP-binding cassette transporter A1,” Genomics, vol. 83, no. 6, pp. 1116–1124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  294. A. M. Verhagen, T. K. Kratina, C. J. Hawkins, J. Silke, P. G. Ekert, and D. L. Vaux, “Identification of mammalian mitochondrial proteins that interact with IAPs via N-terminal IAP binding motifs,” Cell Death and Differentiation, vol. 14, no. 2, pp. 348–357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  295. L. Xu, M. E. Sowa, J. Chen, X. Li, S. P. Gygi, and J. W. Harper, “An FTS/Hook/p107FHIP complex interacts with and promotes endosomal clustering by the homotypic vacuolar protein sorting complex,” Molecular Biology of the Cell, vol. 19, no. 12, pp. 5059–5071, 2008. View at Publisher · View at Google Scholar · View at Scopus
  296. X. Ge, C. L. Frank, F. Calderon de Anda, and L. H. Tsai, “Hook3 interacts with PCM1 to regulate pericentriolar material assembly and the timing of neurogenesis,” Neuron, vol. 65, no. 2, pp. 191–203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  297. J. A. Freeman, C. Rappl, V. Kuhle, M. Hensel, and S. I. Miller, “SpiC is required for translocation of Salmonella pathogenicity island 2 effectors and secretion of translocon proteins SseB and SseC,” Journal of Bacteriology, vol. 184, no. 18, pp. 4971–4980, 2002. View at Publisher · View at Google Scholar · View at Scopus
  298. X. J. Yu, J. Ruiz-Albert, K. E. Unsworth, S. Garvis, M. Liu, and D. W. Holden, “SpiC is required for secretion of Salmonella pathogenicity Island 2 type III secretion system proteins,” Cellular Microbiology, vol. 4, no. 8, pp. 531–540, 2002. View at Publisher · View at Google Scholar · View at Scopus
  299. X. J. Yu, M. Liu, and D. W. Holden, “SsaM and SpiC interact and regulate secretion of Salmonella pathogenicity Island 2 type III secretion system effectors and translocators,” Molecular Microbiology, vol. 54, no. 3, pp. 604–619, 2004. View at Publisher · View at Google Scholar · View at Scopus
  300. X. J. Yu, K. McGourty, M. Liu, K. E. Unsworth, and D. W. Holden, “pH sensing by intracellular Salmonella induces effector translocation,” Science, vol. 328, no. 5981, pp. 1040–1043, 2010. View at Publisher · View at Google Scholar · View at Scopus
  301. K. Kaniga, J. Uralil, J. B. Bliska, and J. E. Galán, “A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium,” Molecular Microbiology, vol. 21, no. 3, pp. 633–641, 1996. View at Google Scholar · View at Scopus
  302. Y. Fu and J. E. Galán, “The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton,” Molecular Microbiology, vol. 27, no. 2, pp. 359–368, 1998. View at Publisher · View at Google Scholar · View at Scopus
  303. S. L. Lin, T. X. Le, and D. S. Cowen, “SptP, a Salmonella typhimurium type III-secreted protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation,” Cellular Microbiology, vol. 5, no. 4, pp. 267–275, 2003. View at Publisher · View at Google Scholar · View at Scopus
  304. A. Haraga and S. I. Miller, “A Salmonella enterica serovar Typhimurium translocated leucine-rich repeat effector protein inhibits NF-κB-dependent gene expression,” Infection and Immunity, vol. 71, no. 7, pp. 4052–4058, 2003. View at Publisher · View at Google Scholar · View at Scopus
  305. Y. Ye, “Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase,” Journal of Structural Biology, vol. 156, no. 1, pp. 29–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  306. R. Rotger and J. Casadesus, “The virulence plasmids of Salmonella,” International Microbiology, vol. 2, no. 3, pp. 177–184, 1999. View at Google Scholar
  307. E. F. Boyd and D. L. Hartl, “Salmonella virulence plasmid: modular acquisition of the spv virulence region by an F-plasmid in Salmonella enterica subspecies I and insertion into the chromosome of subspecies II, IIIa, IV and VII isolates,” Genetics, vol. 149, no. 3, pp. 1183–1190, 1998. View at Google Scholar · View at Scopus
  308. H. Hochmann, S. Pust, G. Von Figura, K. Aktories, and H. Barth, “Salmonella enterica SpvB ADP-ribosylates actin at position arginine-177-characterization of the catalytic domain within the SpvB protein and a comparison to binary clostridial actin-ABP-ribosylating toxins,” Biochemistry, vol. 45, no. 4, pp. 1271–1277, 2006. View at Publisher · View at Google Scholar · View at Scopus
  309. M. L. Lesnick, N. E. Reiner, J. Fierer, and D. G. Guiney, “The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells,” Molecular Microbiology, vol. 39, no. 6, pp. 1464–1470, 2001. View at Publisher · View at Google Scholar · View at Scopus
  310. S. M. Margarit, W. Davidson, L. Frego, and C. E. Stebbins, “A steric antagonism of actin polymerization by a Salmonella virulence protein,” Structure, vol. 14, no. 8, pp. 1219–1229, 2006. View at Publisher · View at Google Scholar · View at Scopus
  311. D. Tezcan-Merdol, T. Nyman, U. Lindberg, F. Haag, F. Koch-Nolte, and M. Rhen, “Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB,” Molecular Microbiology, vol. 39, no. 3, pp. 606–619, 2001. View at Publisher · View at Google Scholar · View at Scopus
  312. E. A. Miao, M. Brittnacher, A. Haraga, R. L. Jeng, M. D. Welch, and S. I. Miller, “Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton,” Molecular Microbiology, vol. 48, no. 2, pp. 401–415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  313. C. L. Birmingham, X. Jiang, M. B. Ohlson, S. I. Miller, and J. H. Brumell, “Salmonella-induced filament formation is a dynamic phenotype induced by rapidly replicating Salmonella enterica serovar typhimurium in epithelial cells,” Infection and Immunity, vol. 73, no. 2, pp. 1204–1208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  314. S. H. Browne, M. L. Lesnick, and D. G. Guiney, “Genetic requirements for Salmonella-induced cytopathology in human monocyte-derived macrophages,” Infection and Immunity, vol. 70, no. 12, pp. 7126–7135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  315. A. Kurita, H. Gotoh, M. Eguchi et al., “Intracellular expression of the Salmonella plasmid virulence protein, SpvB, causes apoptotic cell death in eukaryotic cells,” Microbial Pathogenesis, vol. 35, no. 1, pp. 43–48, 2003. View at Publisher · View at Google Scholar · View at Scopus
  316. H. Gotoh, N. Okada, Y. G. Kim et al., “Extracellular secretion of the virulence plasmid-encoded ADP-ribosyltransferase SpvB in Salmonella,” Microbial Pathogenesis, vol. 34, no. 5, pp. 227–238, 2003. View at Publisher · View at Google Scholar · View at Scopus
  317. S. H. Browne, P. Hasegawa, S. Okamoto, J. Fierer, and D. G. Guiney, “Identification of Salmonella SPI-2 secretion system components required for SpvB-mediated cytotoxicity in macrophages and virulence in mice,” FEMS Immunology and Medical Microbiology, vol. 52, no. 2, pp. 194–201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  318. P. Mazurkiewicz, J. Thomas, J. A. Thompson et al., “SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases,” Molecular Microbiology, vol. 67, no. 6, pp. 1371–1383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  319. T. Haneda, Y. Ishii, H. Shimizu, K. Ohshima, N. Iida et al., “Salmonella type III effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection,” Cellular Microbiology, vol. 14, no. 4, pp. 485–499, 2012. View at Google Scholar
  320. H. Li, H. Xu, Y. Zhou et al., “The phosphothreonine lyase activity of a bacterial type III effector family,” Science, vol. 315, no. 5814, pp. 1000–1003, 2007. View at Publisher · View at Google Scholar · View at Scopus
  321. D. F. Brennan and D. Barford, “Eliminylation: a post-translational modification catalyzed by phosphothreonine lyases,” Trends in Biochemical Sciences, vol. 34, no. 3, pp. 108–114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  322. L. Chen, H. Wang, J. Zhang et al., “Structural basis for the catalytic mechanism of phosphothreonine lyase,” Nature Structural and Molecular Biology, vol. 15, no. 1, pp. 101–102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  323. Z. Ke, G. K. Smith, Y. Zhang, and H. Guo, “Molecular mechanism for eliminylation, a newly discovered post-translational modification,” Journal of the American Chemical Society, vol. 133, no. 29, pp. 11103–11105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  324. G. K. Smith, Z. Ke, A. C. Hengge, D. Xu, D. Xie, and H. Guo, “Active-site dynamics of SpvC virulence factor from Salmonella typhimurium and density functional theory study of phosphothreonine lyase catalysis,” Journal of Physical Chemistry B, vol. 113, no. 46, pp. 15327–15333, 2009. View at Publisher · View at Google Scholar · View at Scopus
  325. Y. Zhu, H. Li, C. Long et al., “Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase,” Molecular Cell, vol. 28, no. 5, pp. 899–913, 2007. View at Publisher · View at Google Scholar · View at Scopus
  326. M. Cordero-Alba, J. Bernal-Bayard, and F. Ramos-Morales, “SrfJ: a Salmonella type III secretion system effector regulated by PhoP, RcsB and IolR,” Journal of Bacteriology, vol. 194, no. 16, pp. 4226–4236, 2012. View at Publisher · View at Google Scholar
  327. D. Canals, D. M. Perry, R. W. Jenkins, and Y. A. Hannun, “Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases,” British Journal of Pharmacology, vol. 163, no. 4, pp. 694–712, 2011. View at Publisher · View at Google Scholar · View at Scopus
  328. C. Kröger and T. M. Fuchs, “Characterization of the myo-inositol utilization island of Salmonella enterica serovar Typhimurium,” Journal of Bacteriology, vol. 191, no. 2, pp. 545–554, 2009. View at Publisher · View at Google Scholar · View at Scopus
  329. C. R. Beuzón, G. Banks, J. Deiwick, M. Hensel, and D. W. Holden, “pH-dependent secretion of SseB, a product of the SPI-2 type III secretion system of Salmonella typhimurium,” Molecular Microbiology, vol. 33, no. 4, pp. 806–816, 1999. View at Publisher · View at Google Scholar · View at Scopus
  330. J. R. Klein and B. D. Jones, “Salmonella pathogenicity island 2-encoded proteins SseC and SseD are essential for virulence and are substrates of the type III secretion system,” Infection and Immunity, vol. 69, no. 2, pp. 737–743, 2001. View at Publisher · View at Google Scholar · View at Scopus
  331. T. Nikolaus, J. Deiwick, C. Rappl et al., “SseBCD proteins are secreted by the type III secretion system of Salmonella pathogenicity island 2 and function as a translocon,” Journal of Bacteriology, vol. 183, no. 20, pp. 6036–6045, 2001. View at Publisher · View at Google Scholar · View at Scopus
  332. V. Kuhle and M. Hensel, “SseF and SseG are translocated effectors of the type III secretion system of Salmonella pathogenicity island 2 that modulate aggregation of endosomal compartments,” Cellular Microbiology, vol. 4, no. 12, pp. 813–824, 2002. View at Publisher · View at Google Scholar · View at Scopus
  333. R. L. Guy, L. A. Gonias, and M. A. Stein, “Aggregation of host endosomes by Salmonella requires SPI2 translocation of SseFG and involves SpvR and the fms-aroE intragenic region,” Molecular Microbiology, vol. 37, no. 6, pp. 1417–1435, 2000. View at Publisher · View at Google Scholar · View at Scopus
  334. P. Müller, D. Chikkaballi, and M. Hensel, “Functional dissection of SseF, a membrane-integral effector protein of intracellular Salmonella enterica,” PLoS ONE, vol. 7, no. 4, Article ID e35004, 2012. View at Publisher · View at Google Scholar
  335. V. Kuhle, D. Jäckel, and M. Hensel, “Effector proteins encoded by Salmonella pathogenicity island 2 interfere with the microtubule cytoskeleton after translocation into host cells,” Traffic, vol. 5, no. 5, pp. 356–370, 2004. View at Publisher · View at Google Scholar · View at Scopus
  336. G. L. Abrahams, P. Müller, and M. Hensel, “Functional dissection of SseF, a type III effector protein involved in positioning the Salmonella-containing vacuole,” Traffic, vol. 7, no. 8, pp. 950–965, 2006. View at Publisher · View at Google Scholar · View at Scopus
  337. S. P. Salcedo and D. W. Holden, “SseG, a virulence protein that targets Salmonella to the Golgi network,” The EMBO Journal, vol. 22, no. 19, pp. 5003–5014, 2003. View at Publisher · View at Google Scholar · View at Scopus
  338. V. Kuhle, G. L. Abrahams, and M. Hensel, “Intracellular Salmonella enterica redirect exocytic transport processes in a Salmonella pathogenicity island 2-dependent manner,” Traffic, vol. 7, no. 6, pp. 716–730, 2006. View at Publisher · View at Google Scholar · View at Scopus
  339. A. E. Ramsden, D. W. Holden, and L. J. Mota, “Membrane dynamics and spatial distribution of Salmonella-containing vacuoles,” Trends in Microbiology, vol. 15, no. 11, pp. 516–524, 2007. View at Publisher · View at Google Scholar · View at Scopus
  340. T. Henry, J. P. Gorvel, and S. Méresse, “Molecular motors hijacking by intracellular pathogens,” Cellular Microbiology, vol. 8, no. 1, pp. 23–32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  341. X. Wang, D. Li, D. Qu, and D. Zhou, “Involvement of TIP60 acetyltransferase in intracellular Salmonella replication,” BMC Microbiology, vol. 10, article 228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  342. M. J. Worley, G. S. Nieman, K. Geddes, and F. Heffron, “Salmonella typhimurium disseminates within its host by manipulating the motility of infected cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 47, pp. 17915–17920, 2006. View at Publisher · View at Google Scholar · View at Scopus
  343. L. M. McLaughlin, G. R. Govoni, C. Gerke et al., “The Salmonella SPI2 effector SseI mediates long-term systemic infection by modulating host cell migration,” PLoS Pathogens, vol. 5, no. 11, Article ID e1000671, 2009. View at Publisher · View at Google Scholar · View at Scopus
  344. J. M. Thornbrough and M. J. Worley, “A naturally occurring single nucleotide polymorphism in the Salmonella SPI-2 type III effector srfH/sseI controls early extraintestinal dissemination,” PLoS ONE, vol. 7, no. 9, Article ID e45245, 2012. View at Publisher · View at Google Scholar
  345. S. W. Hicks, G. Charron, H. C. Hang, and J. E. Galán, “Subcellular targeting of Salmonella virulence proteins by host-mediated S-palmitoylation,” Cell Host & Microbe, vol. 10, no. 1, pp. 9–20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  346. N. S. Lossi, N. Rolhion, A. I. Magee, C. Boyle, and D. W. Holden, “The Salmonella SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid: cholesterol acyltransferase activity,” Microbiology, vol. 154, no. 9, pp. 2680–2688, 2008. View at Publisher · View at Google Scholar · View at Scopus
  347. P. Nawabi, D. M. Catron, and K. Haldar, “Esterification of cholesterol by a type III secretion effector during intracellular Salmonella infection,” Molecular Microbiology, vol. 68, no. 1, pp. 173–185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  348. M. B. Ohlson, K. Fluhr, C. L. Birmingham, J. H. Brumell, and S. I. Miller, “SseJ deacylase activity by Salmonella enterica serovar typhimurium promotes virulence in mice,” Infection and Immunity, vol. 73, no. 10, pp. 6249–6259, 2005. View at Publisher · View at Google Scholar · View at Scopus
  349. M. Christen, L. H. Coye, J. S. Hontz et al., “Activation of a bacterial virulence protein by the GTPase RhoA,” Science Signaling, vol. 2, no. 95, p. ra71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  350. D. L. LaRock, P. S. Brzovic, I. Levin, M. P. Blanc, and S. I. Miller, “A Salmonella typhimurium-translocated glycerophospholipid:cholesterol acyltransferase promotes virulence by binding to the RhoA protein switch regions,” The Journal of Biological Chemistry, vol. 287, no. 35, pp. 29654–29663, 2012. View at Publisher · View at Google Scholar
  351. S. L. Kujat Choy, E. C. Boyle, O. Gal-Mor et al., “SseK1 and SseK2 are novel translocated proteins of Salmonella enterica serovar Typhimurium,” Infection and Immunity, vol. 72, no. 9, pp. 5115–5125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  352. N. F. Brown, B. K. Coombes, J. L. Bishop et al., “Salmonella phage ST64B encodes a member of the SseK/NleB effector family,” PLoS ONE, vol. 6, no. 3, Article ID e17824, 2011. View at Publisher · View at Google Scholar · View at Scopus
  353. B. K. Coombes, M. J. Lowden, J. L. Bishop et al., “SseL is a Salmonella-specific translocated effector integrated into the SsrB-controlled Salmonella pathogenicity island 2 type III secretion system,” Infection and Immunity, vol. 75, no. 2, pp. 574–580, 2007. View at Publisher · View at Google Scholar · View at Scopus
  354. S. D. Auweter, H. B. Yu, E. T. Arena, J. A. Guttman, and B. B. Finlay, “Oxysterol-binding protein (OSBP) enhances replication of intracellular Salmonella and binds the Salmonella SPI-2 effector SseL via its N-terminus,” Microbes and Infection, vol. 14, no. 2, pp. 148–154, 2011. View at Google Scholar
  355. E. T. Arena, S. D. Auweter, L. C. Antunes, A. W. Vogl, J. Han et al., “The deubiquitinase activity of the Salmonella pathogenicity island 2 effector, SseL, prevents accumulation of cellular lipid droplets,” Infection and Immunity, vol. 79, no. 11, pp. 4392–4400, 2011. View at Google Scholar
  356. R. Singh and A. M. Cuervo, “Lipophagy: connecting autophagy and lipid metabolism,” International Journal of Cell Biology, vol. 2012, Article ID 282041, 12 pages, 2012. View at Publisher · View at Google Scholar
  357. S. G. S. C. Buchanan and N. J. Gay, “Structural and functional diversity in the leucine-rich repeat family of proteins,” Progress in Biophysics and Molecular Biology, vol. 65, no. 1-2, pp. 1–44, 1996. View at Google Scholar · View at Scopus
  358. I. Levin, C. Eakin, M. P. Blanc, R. E. Klevit, S. I. Miller, and P. S. Brzovic, “Identification of an unconventional E3 binding surface on the UbcH5 ~ Ub conjugate recognized by a pathogenic bacterial E3 ligase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 7, pp. 2848–2853, 2010. View at Publisher · View at Google Scholar · View at Scopus
  359. E. Cardenal-Munoz and F. Ramos-Morales, “Analysis of the expression, secretion and translocation of the Salmonella enterica type III secretion system effector SteA,” PLoS ONE, vol. 6, no. 10, Article ID e26930, 2011. View at Google Scholar
  360. S. B. Van Engelenburg and A. E. Palmer, “Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors,” Nature Methods, vol. 7, no. 4, pp. 325–330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  361. J. Poh, C. Odendall, A. Spanos et al., “SteC is a Salmonella kinase required for SPI-2-dependent F-actin remodelling,” Cellular Microbiology, vol. 10, no. 1, pp. 20–30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  362. P. Fernandez-Pinar, A. Aleman, J. Sondek, H. G. Dohlman, M. Molina et al., “The Salmonella typhimurium effector SteC inhibits Cdc42-mediated signaling through binding to the exchange factor Cdc24 in Saccharomyces cerevisiae,” Molecular Biology of the Cell, vol. 23, no. 22, pp. 4430–4443, 2012. View at Publisher · View at Google Scholar
  363. A. B. Blanc-Potard, F. Solomon, J. Kayser, and E. A. Groisman, “The SPI-3 pathogenicity island of Salmonella enterica,” Journal of Bacteriology, vol. 181, no. 3, pp. 998–1004, 1999. View at Google Scholar · View at Scopus
  364. T. D. Ho, N. Figueroa-Bossi, M. Wang, S. Uzzau, L. Bossi, and J. M. Slauch, “Identification of GtgE, a novel virulence factor encoded on the Gifsy-2 bacteriophage of Salmonella enterica serovar typhimurium,” Journal of Bacteriology, vol. 184, no. 19, pp. 5234–5239, 2002. View at Publisher · View at Google Scholar · View at Scopus
  365. S. Spanò, X. Liu, and J. E. Galán, “Proteolytic targeting of Rab29 by an effector protein distinguishes the intracellular compartments of human-adapted and broad-host Salmonella,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 45, pp. 18418-–18423, 2011. View at Google Scholar
  366. R. Samudrala, F. Heffron, and J. E. McDermott, “Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type iii secretion systems,” PLoS Pathogens, vol. 5, no. 4, Article ID e1000375, 2009. View at Publisher · View at Google Scholar · View at Scopus