Table of Contents
ISRN Materials Science
Volume 2012, Article ID 789525, 24 pages
http://dx.doi.org/10.5402/2012/789525
Review Article

Direct Synthesis of Functional Zeolitic Materials

Instituto de Tecnología Química (UPV-CSIC), Universidad Politécnica de Valencia, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain

Received 25 September 2012; Accepted 25 October 2012

Academic Editors: L. Chang, D. Chicot, E. J. Nassar, and H. Saxén

Copyright © 2012 Manuel Moliner. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Vermeiren and J. P. Gilson, “Impact of zeolites on the petroleum and petrochemical industry,” Topics in Catalysis, vol. 52, no. 9, pp. 1131–1161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Liu, Y. Wang, and Z. Xie, “Thoughts on the future development of zeolitic catalysts from an industrial point of view,” Chinese Journal of Catalysis, vol. 33, pp. 22–38, 2012. View at Google Scholar
  3. C. S. Cundy and P. A. Cox, “The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time,” Chemical Reviews, vol. 103, no. 3, pp. 663–701, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Corma, “From microporous to mesoporous molecular sieve materials and their use in catalysis,” Chemical Reviews, vol. 97, no. 6, pp. 2373–2419, 1997. View at Google Scholar · View at Scopus
  5. E. Erdem, N. Karapinar, and R. Donat, “The removal of heavy metal cations by natural zeolites,” Journal of Colloid and Interface Science, vol. 280, no. 2, pp. 309–314, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. R. M. Barrer, “Synthesis of a zeolitic mineral with chabazite-like sorptive properties,” Journal of the Chemical Society, pp. 127–132, 1948. View at Publisher · View at Google Scholar · View at Scopus
  7. R. M. Barrer, L. Hinds, and E. A. White, “The hydrothermal chemistry of silicates—part 3. Reactions of analcite and leucite,” Journal of the Chemical Society, pp. 1466–1475, 1953. View at Google Scholar · View at Scopus
  8. R. M. Barrer and P. J. Denny, “Hydrothermal chemistry of the silicates—Part 9. Nitrogenous aluminosilicates,” Journal of the Chemical Society, pp. 971–982, 1961. View at Google Scholar · View at Scopus
  9. R. F. Lobo, S. I. Zones, and M. E. Davis, “Structure-direction in zeolite synthesis,” Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, vol. 21, no. 1–4, pp. 47–78, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. B. M. Lok, T. R. Cannan, and C. A. Messina, “The role of organic molecules in molecular sieve synthesis,” Zeolites, vol. 3, no. 4, pp. 282–291, 1983. View at Google Scholar · View at Scopus
  11. A. W. Burton and S. I. Zones, “Organic molecules in zeolite synthesis: their preparation and structure-directing effects,” Studies in Surface Science and Catalysis, vol. 168, pp. 137–179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. E. Davis and R. F. Lobo, “Zeolite and molecular sieve synthesis,” Chemistry of Materials, vol. 4, no. 4, pp. 756–768, 1992. View at Google Scholar · View at Scopus
  13. J. Cejka, A. Corma, and S. I. Zones, Eds., Zeolites and Catalysis, Wiley, 2010.
  14. R. L. Wadlinger, G. T. Kerr, and E. J. Rosinski, “Catalytic composition of a crystalline zeolite,” US Patent 3,308,069, 1967.
  15. R. J. Argauer and G. R. Landolt, “Crystalline zeolite ZSM-5 and method of preparing the same,” US Patent 3,702,886, 1972.
  16. M. M. J. Treacy and J. M. Newsam, “Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth,” Nature, vol. 332, no. 6161, pp. 249–251, 1988. View at Google Scholar · View at Scopus
  17. G. T. Kokotailo, S. L. Lawton, D. H. Olson, and W. M. Meier, “Structure of synthetic zeolite ZSM-5,” Nature, vol. 272, no. 5652, pp. 437–438, 1978. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Perego, G. Bellusi, C. Corno, M. Taramasso, F. Buonomo, and A. Esposito, “Titanium-silicalite: a novel derivative in the pentasil family,” Studies in Surface Science and Catalysis, vol. 28, pp. 129–136, 1986. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Bellussi and M. S. Rigutto, “Metal ions associated to the molecular sieve framework: possible catalytic oxidation sites,” Studies in Surface Science and Catalysis, vol. 85, pp. 177–213, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Blasco, M. A. Camblor, A. Corma et al., “Unseeded synthesis of Al-free Ti-β zeolite in fluoride mediumml: a hydrophobic selective oxidation catalyst,” Chemical Communications, no. 20, pp. 2367–2368, 1996. View at Google Scholar · View at Scopus
  21. M. J. Díaz-Cabañas, L. A. Villaescusa, and M. A. Camblor, “Synthesis and catalytic activity of Ti-ITQ-7: a new oxidation catalyst with a three-dimensional system of large pore channels,” Chemical Communications, no. 9, pp. 761–762, 2000. View at Google Scholar · View at Scopus
  22. M. Moliner, P. Serna, Á. Cantín, G. Sastre, M. J. Díaz-Cabanas, and A. Corma, “Synthesis of the ti-silicate form of BEC polymorph of β-zeolite assisted by molecular modeling,” Journal of Physical Chemistry C, vol. 112, no. 49, pp. 19547–19554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Wu, T. Tatsumi, T. Komatsu, and T. Yashima, “Hydrothermal synthesis of a novel titanosilicate with MWW topology,” Chemistry Letters, no. 7, pp. 774–775, 2000. View at Google Scholar · View at Scopus
  24. W. Fan, P. Wu, S. Namba, and T. Tatsumi, “A titanosilicate that is structurally analogous to an MWW-type Lamellar precursor,” Angewandte Chemie, vol. 43, no. 2, pp. 236–240, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Corma, L. T. Nemeth, M. Renz, and S. Valencia, “Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations,” Nature, vol. 412, no. 6845, pp. 423–425, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Corma, M. E. Domine, L. Nemeth, and S. Valencia, “Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley Reaction),” Journal of the American Chemical Society, vol. 124, no. 13, pp. 3194–3195, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Boronat, P. Concepción, A. Corma, M. Renz, and S. Valencia, “Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies,” Journal of Catalysis, vol. 234, no. 1, pp. 111–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. M. S. Holm, S. Saravanamurugan, and E. Taarning, “Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts,” Science, vol. 328, no. 5978, pp. 602–605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Moliner, Y. Román-Leshkov, and M. E. Davis, “Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 14, pp. 6164–6168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Román-Leshkov, M. Moliner, J. A. Labinger, and M. E. Davis, “Mechanism of glucose isomerization using a solid lewis acid catalyst in water,” Angewandte Chemie, vol. 49, no. 47, pp. 8954–8957, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Bermejo-Deval, R. S. Assary, E. Nikolla et al., “Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 9727–9732, 2010. View at Google Scholar
  32. N. K. Mal, V. Ramaswamy, S. Ganapathy, and A. V. Ramaswamy, “Synthesis and characterization of crystalline, tin-silicate molecular sieves with MFI structure,” Journal of the Chemical Society, Chemical Communications, no. 17, pp. 1933–1934, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. N. K. Mal, A. Bhaumik, V. Ramaswamy, A. A. Belhekar, and A. V. Ramaswamy, “Synthesis of Al-free Sn-containing molecular sieves of MFI, MEL and MTWtypes and their catalytic activity in oxidation reactions,” Studies in Surface Science and Catalysis, vol. 94, pp. 317–324, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Janiszewska, S. Kowalak, W. Supronowicz, and F. Roessner, “Synthesis and properties of stannosilicates,” Microporous and Mesoporous Materials, vol. 117, no. 1-2, pp. 423–430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Bordiga, R. Buzzoni, F. Geobaldo et al., “Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods,” Journal of Catalysis, vol. 158, no. 2, pp. 486–501, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Giordano, A. Katovic, S. Perathoner et al., “One-step benzene oxidation to phenol—part I: preparation and characterization of Fe-(Al)MFI type catalysts,” Studies in Surface Science and Catalysis, vol. 142, pp. 477–484, 2002. View at Google Scholar · View at Scopus
  37. M. S. Rigutto and H. Van Bekkum, “Synthesis and characterization of a thermally stable vanadium-containing silicalite,” Applied Catalysis, vol. 68, no. 1, pp. L1–L7, 1991. View at Google Scholar · View at Scopus
  38. K. R. Reddy, A. V. Ramaswamy, and P. Ratnasamy, “Synthesis and characterization of a large pore vanadium-containing molecular sieve, V-NCL-1,” Journal of the Chemical Society, Chemical Communications, no. 21, pp. 1613–1615, 1992. View at Publisher · View at Google Scholar · View at Scopus
  39. B. R. Jermy, D. R. Cho, K. V. Bineesh, S. Y. Kim, and D. W. Park, “Direct synthesis of vanadium incorporated three-dimensional KIT-6: a systematic study in the oxidation of cyclohexane,” Microporous and Mesoporous Materials, vol. 115, no. 3, pp. 281–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Fricke, H. Kosslick, G. Lischke, and M. Richter, “Incorporation of gallium into zeolites: syntheses, properties and catalytic application,” Chemical Reviews, vol. 100, no. 6, pp. 2303–2405, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. J. A. Rossin, C. Saldarriaga, and M. E. Davis, “Synthesis of cobalt containing ZSM-5,” Zeolites, vol. 7, no. 4, pp. 295–300, 1987. View at Google Scholar · View at Scopus
  42. B. Z. Wan, R. G. Anthony, C. Saldarriaga, J. Perez, V. P. Shiralkar, and A. Clearfield, “Comparison studies of in situ loaded and impregnated silicalite-cobalt oxides,” Journal of Catalysis, vol. 128, no. 2, pp. 458–467, 1991. View at Google Scholar · View at Scopus
  43. F. Geobaldo, B. Onida, P. Rivolo, F. Di Renzo, F. Fajula, and E. Garrone, “Nature and reactivity of Co species in a cobalt-containing beta zeolite: an FTIR study,” Catalysis Today, vol. 70, no. 1–3, pp. 107–119, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, and E. M. Flanigen, “Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids,” Journal of the American Chemical Society, vol. 104, no. 4, pp. 1146–1147, 1982. View at Google Scholar · View at Scopus
  45. H. O. Pastore, S. Coluccia, and L. Marchese, “Porous aluminophosphates: from molecular sieves to designed acid catalysts,” Annual Review of Materials Research, vol. 35, pp. 351–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Marchese, G. Berlier, and S. Coluccia, “Solid acid microporous H-SAPO-34: from early studies to perspectives,” in Turning Points in Solid-State, Materials and Surface Science, pp. 604–622, 2007. View at Google Scholar
  47. G. Bellussi and P. Pollesel, “Industrial applications of zeolite catalysts: production and uses of light olefins,” Studies in Surface Science and Catalysis, vol. 158, pp. 1201–1212, 2005. View at Google Scholar · View at Scopus
  48. S. T. Wilson and E. M. Flanigen, “Crystalline metal aluminophosphates,” U.S. Patent 4,567,029, 1986.
  49. M. Hartmann and L. Kevan, “Substitution of transition metal ions into aluminophosphates and silicoaluminophosphates: characterization and relation to catalysis,” Research on Chemical Intermediates, vol. 28, no. 7–9, pp. 625–695, 2002. View at Google Scholar · View at Scopus
  50. J. M. Thomas, R. Raja, G. Sankar, and R. G. Bell, “Molecular-sieve catalysts for the selective oxidation of linear alkanes by molecular oxygen,” Nature, vol. 398, no. 6724, pp. 227–230, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Raja, G. Sankar, and J. M. Thomas, “Designing a molecular sieve catalyst for the aerial oxidation of n-hexane to adipic acid,” Angewandte Chemie, vol. 39, pp. 2313–2316, 2000. View at Google Scholar
  52. L. Guczi and I. Kiricsi, “Zeolite supported mono-and bimetallic systems: structure and performance as CO hydrogenation catalysts,” Applied Catalysis A, vol. 186, no. 1-2, pp. 375–394, 1999. View at Google Scholar · View at Scopus
  53. X. Li and E. Iglesia, “Pt/[Fe]ZSM-5 modified by Na and Cs cations: an active and selective catalyst for dehydrogenation of n-alkanes to n-alkenes,” Chemical Communications, vol. 8, no. 5, pp. 594–596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Guzman and B. C. Gates, “Supported molecular catalysts: metal complexes and clusters on oxides and zeolites,” Journal of the Chemical Society. Dalton Transactions, no. 17, pp. 3303–3318, 2003. View at Google Scholar · View at Scopus
  55. Y. Okamoto, Y. Inui, H. Onimatsu, and T. Imanaka, “Identification, thermal stability, and catalytic property of tetracarbonylchromium(0) encapsulated in NaX zeolite,” Journal of Physical Chemistry, vol. 95, no. 12, pp. 4596–4598, 1991. View at Google Scholar · View at Scopus
  56. S. Recchia, C. Dossi, A. Fusi, L. Sordelli, and R. Psaro, “Zeolite-supported metals by design: organometallic-based tin-promoted rhodium/NaY catalysts,” Applied Catalysis A, vol. 182, no. 1, pp. 41–51, 1999. View at Google Scholar · View at Scopus
  57. H. Over, Y. D. Kim, A. P. Seitsonen et al., “Atomic-scale structure and catalytic reactivity of the RuO2(110) surface,” Science, vol. 287, no. 5457, pp. 1474–1476, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Madhavarama, H. Idrissa, and S. Wendtb, “Oxidation reactions over RuO2: a comparative study of the reactivity of the (110) single crystal and polycrystalline surfaces,” Journal of Catalysis, vol. 202, pp. 296–307, 2001. View at Google Scholar
  59. L. Zang and H. Kisch, “Room temperature oxidation of carbon monoxide catalyzed by hydrous ruthenium dioxide,” Angewandte Chemie, vol. 39, pp. 3921–3922, 2000. View at Google Scholar
  60. B. Z. Zhan, M. A. White, T. K. Sham et al., “Zeolite-confined nano-RuO2: a green, selective, and efficient catalyst for aerobic alcohol oxidation,” Journal of the American Chemical Society, vol. 125, no. 8, pp. 2195–2199, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Altwasser, R. Gläser, A. S. Lo, P. H. Liu, K. J. Chao, and J. Weitkamp, “Incorporation of RuO2 nanoparticles into MFI-type zeolites,” Microporous and Mesoporous Materials, vol. 89, no. 1–3, pp. 109–122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. B. Z. Zhan and E. Iglesia, “RuO2 clusters within LTA zeolite cages: consequences of encapsulation on catalytic reactivity and selectivity,” Angewandte Chemie, vol. 46, no. 20, pp. 3697–3700, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Choi, Z. Wu, and E. Iglesia, “Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation,” Journal of the American Chemical Society, vol. 132, no. 26, pp. 9129–9137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Garcia, E. F. Philp, A. M. Z. Slawin, P. A. Wright, and P. A. Cox, “Nickel complexed within an azamacrocycle as a structure directing agent in the crystallization of the framework metalloaluminophosphates STA-6 and STA-7,” Journal of Materials Chemistry, vol. 11, no. 5, pp. 1421–1427, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Garcia, T. D. Coombs, I. J. Shannon, P. A. Wright, and P. A. Cox, “Nickel amine complexes as structure-directing agents for aluminophosphate molecular sieves: a new route to supported nickel catalysts,” Topics in Catalysis, vol. 24, no. 1–4, pp. 115–124, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. R. Garcia, I. J. Shannon, A. M. Z. Slawin, W. Zhou, P. A. Cox, and P. A. Wright, “Synthesis, structure and thermal transformations of aluminophosphates containing the nickel complex [Ni(diethylenetriamine)2]2+ as a structure directing agent,” Microporous and Mesoporous Materials, vol. 58, no. 2, pp. 91–104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Ren, L. Zhu, C. Yang et al., “Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3,” Chemical Communications, vol. 47, pp. 9789–9791, 2011. View at Google Scholar
  68. D. W. Fickel and R. F. Lobo, “Copper coordination in Cu-SSZ-13 and Cu-SSZ-16 investigated by variable-temperature XRD,” Journal of Physical Chemistry C, vol. 114, no. 3, pp. 1633–1640, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Martinez-Franco, M. Moliner, C. Franch, A. Kustov, and A. Corma, “Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NOx,” Applied Catalysis B, vol. 127, pp. 273–280, 2012. View at Google Scholar
  70. U. Deka, I. Lezcano-Gonzalez, S. J. Warrender et al., “Changing active sites in Cu-CHA catalysts: deNOx selectivity as a function of the preparation method,” Microporous and Mesoporous Materials, vol. 166, pp. 144–152, 2013. View at Google Scholar
  71. A. Lorena Picone, S. J. Warrender, A. M. Z. Slawin et al., “A co-templating route to the synthesis of Cu SAPO STA-7, giving an active catalyst for the selective catalytic reduction of NO,” Microporous and Mesoporous Materials, vol. 146, pp. 36–47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Cauvel, D. Brunel, F. Di Renzo, P. Moreau, and F. Fajula, “Functionalization of Y zeolites with organosilane reagents,” Studies in Surface Science and Catalysis, vol. 94, pp. 286–293, 1995. View at Publisher · View at Google Scholar · View at Scopus
  73. M. B. Dines, R. E. Cooksey, P. C. Griffith, and R. H. Lane, “Mixed-component layered tetravalent metal phosphonates/phosphates as precursors for microporous materials,” Inorganic Chemistry, vol. 22, no. 6, pp. 1003–1004, 1983. View at Google Scholar · View at Scopus
  74. G. Alberti, U. Costantino, F. Marmottini, R. Vivant, and P. Zappelli, “Zirconium phosphite (3,3,5,5-tetramethylbiphenyl)diphosphonate, a microporous, layered, inorganic-organic polymer,” Angewandte Chemie, vol. 32, no. 9, pp. 1357–1359, 1993. View at Google Scholar · View at Scopus
  75. G. Alberti, F. Marmottini, S. Murcia-Mascarós, and R. Vivani, “Preparation and preliminary characterization of a covalently pillared zirconium phosphate-diphosphonate with interlayer microporosity,” Angewandte Chemie, vol. 33, no. 15-16, pp. 1594–1597, 1994. View at Google Scholar · View at Scopus
  76. K. Maeda, Y. Kiyozumi, and F. Mizukami, “Synthesis of the first microporous aluminum phosphonate with organic groups covalently bonded to the skeleton,” Angewandte Chemie, vol. 33, no. 22, pp. 2335–2337, 1994. View at Google Scholar · View at Scopus
  77. H. X. Li and M. E. Davis, “Phosphate-based molecular sieves with pores comprised of greater than 12-rings,” Catalysis Today, vol. 19, no. 1, pp. 61–106, 1994. View at Google Scholar · View at Scopus
  78. R. Szostak, Molecular Sieves: Principles of Synthesis and Identification, Van Nostrand Reinhold, New York, NY, USA, 1989.
  79. K. Maeda, J. Akimoto, Y. Kiyozumi, and F. Mizukami, “Structure of aluminium methylphosphonate, AlMepO-β, with unidimensional channels formed from ladder-like organic-inorganic polymer chains,” Journal of the Chemical Society, Chemical Communications, no. 10, pp. 1033–1034, 1995. View at Publisher · View at Google Scholar · View at Scopus
  80. V. J. Carter, P. A. Wright, J. D. Gale, R. E. Morris, E. Sastre, and J. Perez-Pariente, “AlMePO-β: inclusion and thermal removal of structure directing agent and the topotactic reconstructive transformation to its polymorph AlMePO-α,” Journal of Materials Chemistry, vol. 7, no. 11, pp. 2287–2292, 1997. View at Google Scholar · View at Scopus
  81. K. Maeda, J. Akimoto, Y. Kiyozumi, and F. Mizukami, “AlMepO-α: a novel open-framework aluminum methylphosphonate with organo-lined unidimensional channels,” Angewandte Chemie, vol. 34, no. 11, pp. 1199–1201, 1995. View at Google Scholar · View at Scopus
  82. K. Maeda, Y. Kiyozumi, and F. Mizukami, “Characterization and gas adsorption properties of aluminum methylphosphonates with organically lined unidimensional channels,” Journal of Physical Chemistry B, vol. 101, no. 22, pp. 4402–4412, 1997. View at Google Scholar · View at Scopus
  83. C. Schumacher, J. Gonzalez, P. A. Wright, and N. A. Seaton, “Packing of adsorbed molecules in microporous polymorphs aluminium methylphosphonates α and β,” Physical Chemistry Chemical Physics, vol. 7, no. 11, pp. 2351–2356, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Gonzalez, R. N. Devi, P. A. Wright, D. P. Tunstall, and P. A. Cox, “Motion of aromatic hydrocarbons in the microporous aluminum methylphosphonates AlMePO-α and AlMePO-β,” Journal of Physical Chemistry B, vol. 109, no. 46, pp. 21700–21709, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. K. Yamamoto, Y. Sakata, Y. Nohara, Y. Takahashi, and T. Tatsumi, “Organic-inorganic hybrid zeolites containing organic frameworks,” Science, vol. 300, no. 5618, pp. 470–472, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. K. Yamamoto, Y. Nohara, Y. Domon et al., “Organic-inorganic hybrid zeolites with framework organic groups,” Chemistry of Materials, vol. 17, no. 15, pp. 3913–3920, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. K. Yamamoto and T. Tatsumi, “ZOL: a new type of organic-inorganic hybrid zeolites containing organic framework,” Chemistry of Materials, vol. 20, no. 3, pp. 972–980, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. U. Díaz, J. A. Vidal-Moya, and A. Corma, “Synthesis and characterization of hybrid organozeolites with high organic content,” Microporous and Mesoporous Materials, vol. 93, no. 1–3, pp. 180–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. B. L. Su, M. Roussel, K. Vause et al., “Organic group-bridged hybrid materials with a Faujasite X zeolite structure (ZOF-X),” Microporous and Mesoporous Materials, vol. 105, no. 1-2, pp. 49–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. K. Maeda, Y. Mito, T. Yanagase, S. Haraguchi, T. Yamazaki, and T. Suzuki, “The first synthesis of organosilyl-substituted aluminophosphate molecular sieves,” Chemical Communications, no. 3, pp. 283–285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. D. Zhou, X. B. Luo, H. L. Zhang et al., “Synthesis and characterization of organic-functionalized molecular sieves Ph-SAPO-5 and Ph-SAPO-11,” Microporous and Mesoporous Materials, vol. 121, no. 1–3, pp. 194–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. G. Bellussi, A. Carati, E. Di Paola et al., “Crystalline hybrid organic-inorganic alumino-silicates,” Microporous and Mesoporous Materials, vol. 113, no. 1–3, pp. 252–260, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. G. Bellussi, E. Montanari, and E. Di Paola, “ECS-3: a crystalline hybrid organic-inorganic aluminosilicate with open porosity,” Angewandte Chemie, vol. 51, pp. 666–669, 2012. View at Google Scholar
  94. G. Bellussi, R. Millini, E. Montanari et al., “A highly crystalline microporous hybrid organic-inorganic aluminosilicate resembling the AFI-type zeolite,” Chemical Communications, vol. 48, pp. 7356–7358, 2012. View at Google Scholar
  95. C. W. Jones, K. Tsuji, and M. E. Davis, “Organic-functionalized molecular sieves as shape-selective catalysts,” Nature, vol. 393, no. 6680, pp. 52–54, 1998. View at Publisher · View at Google Scholar · View at Scopus
  96. C. W. Jones, M. Tsapatsis, T. Okubo, and M. E. Davis, “Organic-functionalized molecular sieves—III. Shape selective catalysis,” Microporous and Mesoporous Materials, vol. 42, no. 1, pp. 21–35, 2001. View at Publisher · View at Google Scholar · View at Scopus
  97. C. W. Jones, K. Tsuji, and M. E. Davis, “Organic-functionalized molecular sieves (OFMSs)—II. Synthesis, characterization and the transformation of OFMSs containing non-polar functional groups into solid acids,” Microporous and Mesoporous Materials, vol. 33, no. 1–3, pp. 223–240, 1999. View at Google Scholar · View at Scopus
  98. K. Tsuji, C. W. Jones, and M. E. Davis, “Organic-functionalized molecular sieves (OFMSs)—I. Synthesis and characterization of OFMSs with polar functional groups,” Microporous and Mesoporous Materials, vol. 29, no. 3, pp. 339–349, 1999. View at Google Scholar · View at Scopus
  99. P. Atienzar, M. J. Díaz-Cabañas, M. Moliner, E. Peris, A. Corma, and H. García, “Monomers that form conducting polymers as structure-directing agents: synthesis of microporous molecular sieves encapsulating Poly- paraphenylenevinylene,” Chemistry, vol. 13, no. 31, pp. 8733–8738, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. C. Martínez and A. Corma, “Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes,” Coordination Chemistry Reviews, vol. 255, no. 13-14, pp. 1558–1580, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Taguchi and F. Schüth, “Ordered mesoporous materials in catalysis,” Microporous and Mesoporous Materials, vol. 77, no. 1, pp. 1–45, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Corma, M. J. Díaz-Cabãas, J. L. Jordá, C. Martínez, and M. Moliner, “High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings,” Nature, vol. 443, no. 7113, pp. 842–845, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. C. C. Freyhardt, M. Tsapatsis, R. F. Lobo, K. J. Balkus, and M. E. Davis, “A high-silica zeolite with a 14-tetrahedral-atom pore opening,” Nature, vol. 381, no. 6580, pp. 295–298, 1996. View at Google Scholar · View at Scopus
  104. S. Van Donk, A. H. Janssen, J. H. Bitter, and K. P. De Jong, “Generation, characterization, and impact of mesopores in zeolite catalysts,” Catalysis Reviews, vol. 45, no. 2, pp. 297–319, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. R. Chal, C. Gerardin, M. Bulut, and S. van Donk, “Overview and industrial assessment of synthesis strategies towards zeolites with mesopores,” ChemCatChem, vol. 3, pp. 67–81, 2011. View at Google Scholar
  106. J. Pérez-Ramírez, C. H. Christensen, K. Egeblad, C. H. Christensen, and J. C. Groen, “Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design,” Chemical Society Reviews, vol. 37, no. 11, pp. 2530–2542, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. H. Lee, S. I. Zones, and M. E. Davis, “A combustion-free methodology for synthesizing zeolites and zeolite-like materials,” Nature, vol. 425, no. 6956, pp. 385–388, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. K. Egeblad, C. H. Christensen, M. Kustova, and C. H. Christensen, “Templating mesoporous zeolites,” Chemistry of Materials, vol. 20, no. 3, pp. 946–960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Karlsson, M. Stöcker, and R. Schmidt, “Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach,” Microporous and Mesoporous Materials, vol. 27, no. 2-3, pp. 181–192, 1999. View at Google Scholar · View at Scopus
  110. A. Sakthivel, S. J. Huang, W. H. Chen et al., “Direct synthesis of highly stable mesoporous molecular sieves containing zeolite building units,” Advanced Functional Materials, vol. 15, no. 2, pp. 253–258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. G. Chen, L. Jiang, L. Wang, and J. Zhang, “Synthesis of mesoporous ZSM-5 by one-pot method in the presence of polyethylene glycol,” Microporous and Mesoporous Materials, vol. 134, no. 1–3, pp. 189–194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Zhou, Z. Hua, Z. Liu, W. Wu, Y. Zhu, and J. Shi, “Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties,” ACS Catalysis, vol. 1, no. 4, pp. 287–291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. Y. Zhu, Z. Hua, J. Zhou et al., “Hierarchical mesoporous zeolites: direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation,” Chemistry, vol. 17, pp. 14618–14627, 2011. View at Google Scholar
  114. J. Vernimmen, V. Meynen, M. Mertens, O. I. Lebedev, G. Van Tendeloo, and P. Cool, “Formation of a Ti-siliceous trimodal material with macroholes, mesopores and zeolitic features via a one-pot templating synthesis,” Journal of Porous Materials, vol. 19, pp. 153–160, 2012. View at Publisher · View at Google Scholar · View at Scopus
  115. Z. Wang, L. Xu, J.-G. Jiang, Y. Liu, M. He, and P. Wu, “One-pot synthesis of catalytically active and mechanically robust mesoporous TS-1 microspheres with the aid of triblock copolymer,” Microporous and Mesoporous Materials, vol. 156, pp. 106–114, 2012. View at Google Scholar
  116. M. Choi, H. S. Cho, R. Srivastava, C. Venkatesan, D. H. Choi, and R. Ryoo, “Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity,” Nature Materials, vol. 5, no. 9, pp. 718–723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  117. M. Choi, R. Srivastava, and R. Ryoo, “Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks,” Chemical Communications, no. 42, pp. 4380–4382, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. B. F. Chmelka, “Zeolites: large molecules welcome,” Nature Materials, vol. 5, no. 9, pp. 681–682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, and A. Carlsson, “Mesoporous zeolite single crystals,” Journal of the American Chemical Society, vol. 122, no. 29, pp. 7116–7117, 2000. View at Publisher · View at Google Scholar · View at Scopus
  120. R. Srivastava, M. Choi, and R. Ryoo, “Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation,” Chemical Communications, no. 43, pp. 4489–4491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. J. Kim, M. Choi, and R. Ryoo, “Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process,” Journal of Catalysis, vol. 269, no. 1, pp. 219–228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. K. Cho, H. S. Cho, L. C. De Ménorval, and R. Ryoo, “Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application,” Chemistry of Materials, vol. 21, no. 23, pp. 5664–5673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. A. Inayat, I. Knoke, E. Spiecker, and W. Schwieger, “Assemblies of mesoporous FAU-type zeolite nanosheets,” Angewandte Chemie, vol. 51, pp. 1962–1965, 2012. View at Google Scholar
  124. D. H. Lee, M. Choi, B. W. Yu, and R. Ryoo, “Organic functionalization of mesopore walls in hierarchically porous zeolites,” Chemical Communications, no. 1, pp. 74–76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. R. R. Mukti, H. Hirahara, A. Sugawara, A. Shimojima, and T. Okubo, “Direct hydrothermal synthesis of hierarchically porous siliceous zeolite by using alkoxysilylated nonionic surfactant,” Langmuir, vol. 26, no. 4, pp. 2731–2735, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. D. P. Serrano, J. Aguado, J. M. Escola, J. M. Rodríguez, and A. Peral, “Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds,” Chemistry of Materials, vol. 18, no. 10, pp. 2462–2464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. D. P. Serrano, R. Sanz, P. Pizarro, and I. Moreno, “Synthesis of hierarchical TS-1 zeolite from silanized seeds,” Topics in Catalysis, vol. 53, no. 19-20, pp. 1319–1329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. R. Sanz, D. P. Serrano, P. Pizarro, and I. Moreno, “Hierarchical TS-1 zeolite synthesized from SiO2 TiO2 xerogels imprinted with silanized protozeolitic units,” Chemical Engineering Journal, vol. 171, no. 3, pp. 1428–1438, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. C. J. H. Jacobsen, J. Houzvicka, and I. Schmidt, “Mesoporous zeolites,” Studies in Surface Science and Catalysis, vol. 135, pp. 167–167, 2001. View at Google Scholar
  130. I. Schmidt, A. Krogh, K. Wienberg, A. Carlsson, M. Brorson, and C. J. H. Jacobsen, “Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite,” Chemical Communications, no. 21, pp. 2157–2158, 2000. View at Google Scholar · View at Scopus
  131. H. Xin, J. Zhao, S. Xu et al., “Enhanced catalytic oxidation by hierarchically structured TS-1 Zeolite,” Journal of Physical Chemistry C, vol. 114, no. 14, pp. 6553–6559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. X. Wei and P. G. Smirniotis, “Synthesis and characterization of mesoporous ZSM-12 by using carbon particles,” Microporous and Mesoporous Materials, vol. 89, no. 1–3, pp. 170–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Y. Kustova, P. Hasselriis, and C. H. Christensen, “Mesoporous MEL—type zeolite single crystal catalysts,” Catalysis Letters, vol. 96, no. 3-4, pp. 205–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. Y. Tao, H. Kanoh, and K. Kaneko, “Uniform mesopore-donated zeolite Y using carbon aerogel templating,” Journal of Physical Chemistry B, vol. 107, no. 40, pp. 10974–10976, 2003. View at Google Scholar · View at Scopus
  135. K. Egeblad, M. Kustova, S. K. Klitgaard, K. Zhu, and C. H. Christensen, “Mesoporous zeolite and zeotype single crystals synthesized in fluoride media,” Microporous and Mesoporous Materials, vol. 101, no. 1-2, pp. 214–223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. I. Schmidt, A. Boisen, E. Gustavsson et al., “Carbon nanotube templated growth of mesoporous zeolite single crystals,” Chemistry of Materials, vol. 13, no. 12, pp. 4416–4418, 2001. View at Publisher · View at Google Scholar · View at Scopus
  137. A. H. Janssen, I. Schmidt, C. J. H. Jacobsen, A. J. Koster, and K. P. de Jong, “Exploratory study of mesopore templating with carbon during zeolite synthesis,” Microporous and Mesoporous Materials, vol. 65, no. 1, pp. 59–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  138. K. P. De Jong and J. W. Geus, “Carbon nanofibers: catalytic synthesis and applications,” Catalysis Reviews, vol. 42, no. 4, pp. 481–510, 2000. View at Google Scholar · View at Scopus
  139. L. Tosheva, V. Valtchev, and J. Sterte, “Silicalite-1 containing microspheres prepared using shape-directing macro-templates,” Microporous and Mesoporous Materials, vol. 35-36, pp. 621–629, 2000. View at Publisher · View at Google Scholar · View at Scopus
  140. J. Zhao, J. Zhou, Y. Chen et al., “Fabrication of mesoporous zeolite microspheres by a one-pot dual-functional templating approach,” Journal of Materials Chemistry, vol. 19, no. 41, pp. 7614–7616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. Y. Kang, W. Shan, J. Wu et al., “Uniform nanozeolite microspheres with large secondary pore architecture,” Chemistry of Materials, vol. 18, no. 7, pp. 1861–1866, 2006. View at Publisher · View at Google Scholar · View at Scopus
  142. J. Hua and Y. Han, “One-step preparation of zeolite silicalite-1 microspheres with adjustable macroporosity,” Chemistry of Materials, vol. 21, no. 12, pp. 2344–2348, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. B. T. Holland, L. Abrams, and A. Stein, “Dual templating of macroporous silicates with zeolitic microporous frameworks,” Journal of the American Chemical Society, vol. 121, no. 17, pp. 4308–4309, 1999. View at Publisher · View at Google Scholar · View at Scopus
  144. A. Dong, Y. Wang, Y. Tang et al., “Zeolitic tissue through wood cell templating,” Advanced Materials, vol. 14, pp. 926–929, 2002. View at Google Scholar
  145. V. Valtchev, M. Smaihi, A. C. Faust, and L. Vidal, “Biomineral-silica-induced zeolitization of Equisetum Arvense,” Angewandte Chemie, vol. 42, no. 24, pp. 2782–2785, 2003. View at Publisher · View at Google Scholar · View at Scopus
  146. V. P. Valtchev, M. Smaihi, A. C. Faust, and L. Vidal, “Equisetum arvense templating of zeolite beta macrostructures with hierarchical porosity,” Chemistry of Materials, vol. 16, no. 7, pp. 1350–1355, 2004. View at Google Scholar · View at Scopus
  147. J. Sun, C. Bonneau, Á. Cantín et al., “The ITQ-37 mesoporous chiral zeolite,” Nature, vol. 458, no. 7242, pp. 1154–1157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. J. Jiang, J. L. ; Jorda, J. ; Yu et al., “Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43,” Science, vol. 333, pp. 1131–1133, 2011. View at Google Scholar
  149. M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, and R. Ryoo, “Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts,” Nature, vol. 461, pp. 246–249, 2009. View at Google Scholar
  150. P. Forzatti and L. Lietti, “Catalyst deactivation,” Catalysis Today, vol. 52, no. 2-3, pp. 165–181, 1999. View at Google Scholar · View at Scopus
  151. A. Corma, V. Fornes, S. B. Pergher, T. L. M. Maesen, and J. G. Buglass, “Delaminated zeolite precursors as selective acidic catalysts,” Nature, vol. 396, no. 6709, pp. 353–356, 1998. View at Publisher · View at Google Scholar · View at Scopus
  152. A. Corma, U. Díaz, M. E. Domine, and V. Fornes, “AlITQ-6 and TiITQ-6: synthesis, characterization, and catalytic activity,” Angewandte Chemie, vol. 39, pp. 1499–1501, 2000. View at Google Scholar
  153. I. Rodriguez, M. J. Climent, S. Iborra, V. Fornés, and A. Corma, “Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols,” Journal of Catalysis, vol. 192, no. 2, pp. 441–447, 2000. View at Publisher · View at Google Scholar · View at Scopus
  154. M. J. Climent, A. Corma, and A. Velty, “Synthesis of hyacinth, vanilla, and blossom orange fragrances: the benefit of using zeolites and delaminated zeolites as catalysts,” Applied Catalysis A, vol. 263, no. 2, pp. 155–161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  155. W. Park, D. Yu, K. Na et al., “Hierarchically structure-directing effect of multi-ammonium surfactants for the generation of MFI zeolite nanosheets,” Chemistry of Materials, vol. 23, pp. 5131–5137, 2011. View at Google Scholar
  156. J. Jung, C. Jo, K. Cho, and R. Ryoo, “Zeolite nanosheet of a single pore thickness generated by a zeolite-structure-directing surfactant,” Journal of Materials Chemistry, vol. 22, pp. 4637–4640, 2012. View at Google Scholar
  157. J. Kim, W. Park, and R. Ryoo, “Surfactant-directed zeolite nanosheets: a high-performance catalyst for gas-phase beckmann rearrangement,” ACS Catalysis, vol. 1, no. 4, pp. 337–341, 2011. View at Publisher · View at Google Scholar · View at Scopus
  158. H. Sato, “Acidity control and catalysis of pentasil zeolites,” Catalysis Reviews, vol. 39, no. 4, pp. 395–424, 1997. View at Google Scholar · View at Scopus
  159. P. Botella, A. Corma, S. Iborra, R. Montón, I. Rodríguez, and V. Costa, “Nanosized and delayered zeolitic materials for the liquid-phase Beckmann rearrangement of cyclododecanone oxime,” Journal of Catalysis, vol. 250, no. 1, pp. 161–170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  160. J. Song, L. Dai, Y. Ji, and F. S. Xiao, “Organic template free synthesis of aluminosilicate zeolite ECR-1,” Chemistry of Materials, vol. 18, no. 12, pp. 2775–2777, 2006. View at Publisher · View at Google Scholar · View at Scopus
  161. J. Wang, L. Xu, K. Zhang et al., “Multilayer structured MFI-type titanosilicate: synthesis and catalytic properties in selective epoxidation of bulky molecules,” Journal of Catalysis, vol. 288, pp. 16–23, 2012. View at Google Scholar
  162. L. Tosheva and V. P. Valtchev, “Nanozeolites: synthesis, crystallization mechanism, and applications,” Chemistry of Materials, vol. 17, no. 10, pp. 2494–2513, 2005. View at Publisher · View at Google Scholar · View at Scopus
  163. M. E. Davis, “Ordered porous materials for emerging applications,” Nature, vol. 417, no. 6891, pp. 813–821, 2002. View at Publisher · View at Google Scholar · View at Scopus
  164. C. Madsen and C. J. H. Jacobsen, “Nanosized zeolite crystals—convenient control of crystal size distribution by confined space synthesis,” Chemical Communications, no. 8, pp. 673–674, 1999. View at Google Scholar · View at Scopus
  165. W. Fan, M. A. Snyder, S. Kumar et al., “Hierarchical nanofabrication of microporous crystals with ordered mesoporosity,” Nature Materials, vol. 7, no. 12, pp. 984–991, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. N. N. Feoktistova, S. P. Zhdanov, W. Lutz, and M. Büllow, “On the kinetics of crystallization of silicalite I,” Zeolites, vol. 9, no. 2, pp. 136–139, 1989. View at Google Scholar · View at Scopus
  167. M. A. Camblor, A. Corma, A. Mifsud, J. Pérez-Pariente, and S. Valencia, “Synthesis of nanocrystalline zeolite beta in the absence of alkali metal cations,” Studies in Surface Science and Catalysis, vol. 105, pp. 341–348, 1997. View at Google Scholar
  168. M. A. Camblor, A. Corma, and S. Valencia, “Characterization of nanocrystalline zeolite beta,” Microporous and Mesoporous Materials, vol. 25, no. 1–3, pp. 59–74, 1998. View at Google Scholar · View at Scopus
  169. B. J. Schoeman, E. Babouchkina, S. Mintova, V. P. Valtchev, and J. Sterte, “Synthesis of discrete colloidal crystals of zeolite beta and their application in the preparation of thin microporous films,” Journal of Porous Materials, vol. 8, no. 1, pp. 13–22, 2001. View at Publisher · View at Google Scholar · View at Scopus
  170. S. Mintova, M. Reinelt, T. H. Metzger, J. Senker, and T. Bein, “Pure silica BETA colloidal zeolite assembled in thin films,” Chemical Communications, vol. 9, no. 3, pp. 326–327, 2003. View at Google Scholar · View at Scopus
  171. D. E. Kuechl, A. I. Benin, L. M. Knight et al., “Multiple paths to nanocrystalline high silica beta zeolite,” Microporous and Mesoporous Materials, vol. 127, no. 1-2, pp. 104–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  172. O. Larlus, S. Mintova, S. T. Wilson, R. R. Willis, H. Abrevaya, and T. Bein, “A powerful structure-directing agent for the synthesis of nanosized Al- and high-silica zeolite Beta in alkaline medium,” Microporous and Mesoporous Materials, vol. 142, no. 1, pp. 17–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  173. A. E. Persson, B. J. Schoeman, J. Sterte, and J. E. Otterstedt, “Synthesis of stable suspensions of discrete colloidal zeolite (Na, TPA)ZSM-5 crystals,” Zeolites, vol. 15, no. 7, pp. 611–619, 1995. View at Publisher · View at Google Scholar · View at Scopus
  174. R. Van Grieken, J. L. Sotelo, J. M. Menéndez, and J. A. Melero, “Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5,” Microporous and Mesoporous Materials, vol. 39, no. 1-2, pp. 135–147, 2000. View at Publisher · View at Google Scholar · View at Scopus
  175. W. Song, R. E. Justice, C. A. Jones, V. H. Grassian, and S. C. Larsen, “Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5,” Langmuir, vol. 20, no. 19, pp. 8301–8306, 2004. View at Publisher · View at Google Scholar · View at Scopus
  176. J. Aguado, D. P. Serrano, J. M. Escola, and J. M. Rodríguez, “Low temperature synthesis and properties of ZSM-5 aggregates formed by ultra-small nanocrystals,” Microporous and Mesoporous Materials, vol. 75, no. 1-2, pp. 41–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  177. G. T. Vuong and T. O. Do, “A new route for the synthesis of uniform nanozeolites with hydrophobic external surface in organic solvent medium,” Journal of the American Chemical Society, vol. 129, no. 13, pp. 3810–3811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  178. G. T. Vuong and T. O. Do, “Synthesis of silylated nanozeolites in the presence of organic phase: two-phase and single-phase methods,” Microporous and Mesoporous Materials, vol. 120, no. 3, pp. 310–316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  179. G. T. Vuong, V. T. Hoang, D. T. Nguyen, and T. O. Do, “Synthesis of nanozeolites and nanozeolite-based FCC catalysts, and their catalytic activity in gas oil cracking reaction,” Applied Catalysis A, vol. 382, no. 2, pp. 231–239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. M. A. Arribas and A. Martínez, “Simultaneous isomerization of n-heptane and saturation of benzene over Pt/Beta catalysts—the influence of zeolite crystal size on product selectivity and sulfur resistance,” Catalysis Today, vol. 65, no. 2-4, pp. 117–122, 2001. View at Publisher · View at Google Scholar · View at Scopus
  181. Y. Wang, E. Min, and X. Mu, “Nanosized β zeolites and their composites as catalysts for acylation and alkane isomerization,” Studies in Surface Science and Catalysis, vol. 154, pp. 241–249, 2004. View at Google Scholar · View at Scopus
  182. M. Noack, P. Kölsch, R. Schäfer, P. Toussaint, and J. Caro, “Molecular sieve membranes for industrial application: problems, progress, solutions,” Chemical Engineering & Technology, vol. 25, pp. 221–230, 2002. View at Google Scholar
  183. J. Coronas and J. Santamaria, “State-of-the-art in zeolite membrane reactors,” Topics in Catalysis, vol. 29, no. 1-2, pp. 29–44, 2004. View at Google Scholar · View at Scopus
  184. S. Mintova, S. Mo, and T. Bein, “Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices,” Chemistry of Materials, vol. 13, no. 3, pp. 901–905, 2001. View at Publisher · View at Google Scholar · View at Scopus
  185. S. Mintova and T. Bein, “Nanosized zeolite films for vapor-sensing applications,” Microporous and Mesoporous Materials, vol. 50, no. 2-3, pp. 159–166, 2001. View at Publisher · View at Google Scholar · View at Scopus
  186. Z. Wang, H. Wang, A. Mitra, L. Huang, and Y. Yan, “Pure-silica zeolite low-k dielectric thin films,” Advanced Materials, vol. 13, pp. 746–749, 2001. View at Google Scholar
  187. C. Platas-Iglesias, L. Vander Elst, W. Z. Zhou et al., “Zeolite GdNaY nanoparticles with very high relaxivity for application as contrast agents in magnetic resonance imaging,” Chemistry, vol. 8, pp. 5121–5131, 2002. View at Google Scholar
  188. É. Csajbók, I. Bányai, L. V. Elst, R. N. Muller, W. Zhou, and J. A. Peters, “Gadolinium(III)-loaded nanoparticulate zeolites as potential high-field MRI contrast agents: relationship between structure and relaxivity,” Chemistry, vol. 11, no. 16, pp. 4799–4807, 2005. View at Publisher · View at Google Scholar · View at Scopus
  189. Y. Zhang, Y. Liu, J. Kong, P. Yang, Y. Tang, and B. Liu, “Efficient proteolysis systemml: a nanozeolitederived microreactor,” Small, vol. 2, no. 10, pp. 1170–1173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  190. T. Yu, Y. Zhang, C. You et al., “Controlled nanozeolite-assembled electrode: remarkable enzyme- immobilization ability and high sensitivity as biosensor,” Chemistry, vol. 12, no. 4, pp. 1137–1143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  191. A. Petushkov, J. Intra, J. B. Graham, S. C. Larsen, and A. K. Salem, “Effect of crystal size and surface functionalization on the cytotoxicity of silicalite-1 nanoparticles,” Chemical Research in Toxicology, vol. 22, no. 7, pp. 1359–1368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  192. T. Kihara, Y. Zhang, Y. Hu, Q. Mao, Y. Tang, and J. Miyake, “Effect of composition, morphology and size of nanozeolite on its in vitro cytotoxicity,” Journal of Bioscience and Bioengineering, vol. 111, no. 6, pp. 725–730, 2011. View at Publisher · View at Google Scholar · View at Scopus
  193. R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London, UK, 1982.
  194. J. Jiang, J. Yu, and A. Corma, “Extra-large-pore zeolites: bridging the gap between micro and mesoporous structures,” Angewandte Chemie, vol. 49, no. 18, pp. 3120–3145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  195. M. E. Leonowicz and D. E. W. Vaughan, “Proposed synthetic zeolite ECR-1 structure gives a new zeolite framework topology,” Nature, vol. 329, no. 6142, pp. 819–821, 1987. View at Google Scholar · View at Scopus
  196. C. S. Hsia Chen, J. L. Schlenker, and S. E. Wentzek, “Synthesis and characterization of synthetic zeolite ECR-1,” Zeolites, vol. 17, no. 4, pp. 393–400, 1996. View at Google Scholar · View at Scopus
  197. A. F. Gualtieri, S. Ferrari, E. Galli, F. Di Renzo, and W. Van Beek, “Rietveld structure refinement of zeolite ECR-1,” Chemistry of Materials, vol. 18, no. 1, pp. 76–84, 2006. View at Publisher · View at Google Scholar · View at Scopus
  198. B. O. Hincapie, L. J. Garces, Q. Zhang, A. Sacco, and S. L. Suib, “Synthesis of mordenite nanocrystals,” Microporous and Mesoporous Materials, vol. 67, no. 1, pp. 19–26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  199. J. Hedlund and F. Jareman, “Texture of MFI films grown from seeds,” Current Opinion in Colloid and Interface Science, vol. 10, no. 5-6, pp. 226–232, 2005. View at Publisher · View at Google Scholar · View at Scopus
  200. Y. Bouizi, J. L. Paillaud, L. Simon, and V. Valtchev, “Seeded synthesis of very high silica zeolite A,” Chemistry of Materials, vol. 19, no. 4, pp. 652–654, 2007. View at Publisher · View at Google Scholar · View at Scopus
  201. B. Xie, J. Song, L. Ren, Y. Ji, J. Li, and F. S. Xiao, “Organotemplate-free and fast route for synthesizing beta zeolite,” Chemistry of Materials, vol. 20, no. 14, pp. 4533–4535, 2008. View at Publisher · View at Google Scholar · View at Scopus
  202. B. Xie, H. Zhang, C. Yang et al., “Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates,” Chemical Communications, vol. 47, no. 13, pp. 3945–3947, 2011. View at Publisher · View at Google Scholar · View at Scopus
  203. Z. Wu, J. Song, Y. Ji, L. Ren, and F. S. Xiao, “Organic template-free synthesis of ZSM-34 zeolite from an assistance of zeolite L seeds solution,” Chemistry of Materials, vol. 20, no. 2, pp. 357–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  204. M. K. Rubin, E. J. Rosinski, and C. J. Plank, “Crystalline zeolite ZSM-34 and method of preparing the same,” U.S. Patent 4,086,186, 2003.
  205. J. C. Vartuli, G. J. Kennedy, B. A. Yoon, and A. Malek, “Zeolite syntheses using diamines: evidence for in situ directing agent modification,” Microporous and Mesoporous Materials, vol. 38, no. 2-3, pp. 247–254, 2000. View at Publisher · View at Google Scholar · View at Scopus
  206. M. L. Occelli, R. A. Innes, S. S. Pollack, and J. V. Sanders, “Quaternary ammonium cation effects on the crystallization of offretite-erionite type zeolites—part 1. Synthesis and catalytic properties,” Zeolites, vol. 7, no. 3, pp. 265–271, 1987. View at Google Scholar · View at Scopus
  207. Y. Kamimura, S. Tanahashi, K. Itabashi et al., “Crystallization behavior of zeolite beta in OSDA-free, seed-assisted synthesis,” Journal of Physical Chemistry C, vol. 115, no. 3, pp. 744–750, 2011. View at Publisher · View at Google Scholar · View at Scopus
  208. E.-P. Ng, D. Chateigner, T. Bein, V. Valtchev, and S. Mintova, “Capturing ultrasmall EMT zeolite from template-free systems,” Science, vol. 335, pp. 70–73, 2011. View at Google Scholar
  209. H. Zhang, Q. Guo, L. Ren et al., “Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units,” Journal of Materials Chemistry, vol. 21, no. 26, pp. 9494–9497, 2011. View at Publisher · View at Google Scholar · View at Scopus
  210. L. Ren, Q. Guo, and H. Zhang, “Organotemplate-free and one-pot fabrication of nano-rod assembled plate-like micro-sized mordenite crystals,” Journal of Materials Chemistry, vol. 22, pp. 6564–6567, 2012. View at Google Scholar
  211. A. B. Pinar, C. Márquez-Álvarez, M. Grande-Casas, and J. Pérez-Pariente, “Template-controlled acidity and catalytic activity of ferrierite crystals,” Journal of Catalysis, vol. 263, no. 2, pp. 258–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  212. A. A. Shaikh, P. N. Joshi, N. E. Jacob, and V. P. Shiralkar, “Direct hydrothermal crystallization of high-silica large-port mordenite,” Zeolites, vol. 13, no. 7, pp. 511–517, 1993. View at Google Scholar · View at Scopus
  213. K. Itabashi, Y. Kamimura, K. Iyoki, A. Shimojima, and T. Okubo, “A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent,” Journal of the American Chemical Society, vol. 134, pp. 11542–11549, 2012. View at Google Scholar
  214. Y. Kamimura, K. Itabashi, and T. Okubo, “Seed-assisted, OSDA-free synthesis of MTW-type zeolite and “Green MTW” from sodium aluminosilicate gel systems,” Microporous and Mesoporous Materials, vol. 147, pp. 149–156, 2012. View at Publisher · View at Google Scholar · View at Scopus
  215. T. Yokoi, M. Yoshioka, H. Imai, and T. Tatsumi, “Diversification of RTH-type zeolite and its catalytic application,” Angewandte Chemie, vol. 48, no. 52, pp. 9767–9887, 2009. View at Publisher · View at Google Scholar · View at Scopus
  216. S. Vortmann, B. Marler, H. Gies, and P. Daniels, “Synthesis and crystal structure of the new borosilicate zeolite RUB-13,” Microporous Materials, vol. 4, no. 2-3, pp. 111–121, 1995. View at Google Scholar · View at Scopus
  217. G. S. Lee and S. I. Zones, “Polymethylated [4.1.1] octanes leading to zeolite SSZ-50,” Journal of Solid State Chemistry, vol. 167, no. 2, pp. 289–298, 2002. View at Publisher · View at Google Scholar · View at Scopus
  218. http://www.iza-structure.org/databases/.
  219. “Breakthroughs of the year”, Science, 334, 1635, 2011.
  220. K. Na, C. Jo, J. Kim et al., “Directing zeolite structures into hierarchically nanoporous architectures,” Science, vol. 333, no. 6040, pp. 328–332, 2011. View at Publisher · View at Google Scholar · View at Scopus