Table of Contents
ISRN Thermodynamics
Volume 2012, Article ID 794741, 10 pages
http://dx.doi.org/10.5402/2012/794741
Research Article

Unsteady/Steady Free Convective Couette Flow of Reactive Viscous Fluid in a Vertical Channel Formed by Two Vertical Porous Plates

1Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria
2Department of Mathematics, Usmanu Danfodiyo University, P.M.B +234-2346, Sokoto, Nigeria

Received 28 March 2012; Accepted 15 May 2012

Academic Editors: M. Appell, G. L. Aranovich, A. Ghoufi, and B. Merinov

Copyright © 2012 Basant K. Jha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Mahmud and R. Andrew Fraser, “Flow, thermal, and entropy generation characteristics inside a porous channel with viscous dissipation,” International Journal of Thermal Sciences, vol. 44, no. 1, pp. 21–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. A. K. Singh, H. R. Gholami, and V. M. Soundalgekar, “Transient free convection flow between two vertical parallel plates,” Heat and Mass Transfer/Waerme- und Stoffuebertragung, vol. 31, no. 5, pp. 329–331, 1996. View at Google Scholar · View at Scopus
  3. L. A. Florio and A. Harnoy, “Augmenting natural convection in a vertical flow path through transverse vibrations of an adiabatic wall,” Numerical Heat Transfer A, vol. 52, no. 6, pp. 497–530, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. B. K. Jha and A. O. Ajibade, “Free convective flow between vertical porous plates with periodic heat input,” ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, vol. 90, no. 3, pp. 185–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Paul, B. K. Jha, and A. K. Singh, “Transient natural convection in a vertical channel,” International Journal of Applied Mechanics and Engineering, vol. 6, no. 4, pp. 913–922, 2001. View at Google Scholar
  6. L. Langellotto, O. Manca, and S. Nardini, “Numerical investigation of transient natural convection in air in a convergent vertical channel symmetrically heated at uniform heat flux,” Numerical Heat Transfer A, vol. 51, no. 11, pp. 1065–1086, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. P. K. Muhuri, “Flow formation in Couette motion in magnetohydrodynamics with suction,” Journal of the Physical Society of Japan, vol. 18, no. 11, pp. 1671–1675, 1963. View at Google Scholar · View at Scopus
  8. A. K. Singh, “Natural convection in unsteady Couette motion,” Defence Science Journal, vol. 38, no. 1, pp. 35–41, 1988. View at Google Scholar · View at Scopus
  9. O. Abdulaziz and I. Hashim, “Fully developed free convection heat and mass transfer of a micropolar fluid between porous vertical plates,” Numerical Heat Transfer A, vol. 55, no. 3, pp. 270–288, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Fang, “Further discussion on the incompressible pressure-driven flow in a channel with porous walls,” International Communications in Heat and Mass Transfer, vol. 31, no. 4, pp. 487–500, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Fang, “A note on the incompressible couette flow with porous walls,” International Communications in Heat and Mass Transfer, vol. 31, no. 1, pp. 31–41, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Wang, Z. Gao, G. Gan, and D. Wu, “Analytical solution of flow coefficients for a uniformly distributed porous channel,” Chemical Engineering Journal, vol. 84, no. 1, pp. 1–6, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Oxarango, P. Schmitz, and M. Quintard, “Laminar flow in channels with wall suction or injection: a new model to study multi-channel filtration systems,” Chemical Engineering Science, vol. 59, no. 5, pp. 1039–1051, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. O. D. Makinde and A. Ogulu, “The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field,” Chemical Engineering Communications, vol. 195, no. 12, pp. 1575–1584, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. O. D. Makinde and R. L. Maserumule, “Thermal criticality and entropy analysis for a variable viscosity Couette flow,” Physica Scripta, vol. 78, no. 1, Article ID 015402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Chaudhary and J. H. Merkin, “Free-convection stagnation-point boundary layers driven by catalytic surface reactions: I the steady states,” Journal of Engineering Mathematics, vol. 28, no. 2, pp. 145–171, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. J. H. Merkin and M. A. Chaudhary, “Free-convection boundary layers on vertical surfaces driven by an exothermic surface reaction,” Quarterly Journal of Mechanics and Applied Mathematics, vol. 47, no. 3, pp. 405–428, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Chaudhary, A. Liñan, and J. H. Merkin, “Free convection boundary layers driven by exothermic surface reactions: critical ambient temperatures,” Mathematical Engineering in Industry, vol. 5, no. 2, pp. 129–145, 1996. View at Google Scholar · View at Scopus
  19. R. O. Ayeni, “On the explosion of chain-thermal reaction,” Journal of the Australian Mathematical Society, vol. 24, pp. 194–202, 1982. View at Google Scholar
  20. F. S. Dainton, Chain Reaction, An Introduction Wiley, New York, NY, USA, 1960.
  21. B. K. Jha, A. K. Samaila, and A. O. Ajibade, “Transient free-convective flow of reactive viscous fluid in a vertical channel,” International Communications in Heat and Mass Transfer, vol. 38, no. 5, pp. 633–637, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Hazem Attia, “The effect of suction and injection on unsteady Couette flow,” Kragujevac Journal of Science, vol. 32, pp. 17–24, 2010. View at Google Scholar