Table of Contents
ISRN Oncology
Volume 2012 (2012), Article ID 825258, 7 pages
http://dx.doi.org/10.5402/2012/825258
Clinical Study

Prognostic Factors and Recurrence in Breast Cancer: Experience at the National Cancer Institute of Mexico

1Breast Cancer Department, National Cancer Institute of Mexico, 14080 Tlalpan, DF, Mexico
2National Cancer Institute of Mexico, 14080 Tlalpan, DF, Mexico
3Department of Critical Care Medicine, National Cancer Institute of Mexico, 14080 Tlalpan, DF, Mexico

Received 16 March 2012; Accepted 28 April 2012

Academic Editors: R. Nahta and L.-M. Sun

Copyright © 2012 A. Stankov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” Ca-A Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005. View at Google Scholar · View at Scopus
  2. K. I. Bland, H. R. Menck, C. E. Scott-Connor, M. Morrow, D. J. Winchester, and D. P. Winchester, “The National Cancer Date base 10 year survey of breast cancer tretmant at hospitals in the United States,” Cancer, vol. 83, pp. 1262–1273, 1998. View at Google Scholar
  3. C. L. Buchanan, P. L. Dorn, J. Fey et al., “Locoregional recurrence after mastectomy:incident and outcomes,” Journal of the American College of Surgeons, vol. 203, no. 4, pp. 469–474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Fisher, M. Bauer, and D. L. Wickerham, “Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update,” Cancer, vol. 52, no. 9, pp. 1551–1557, 1983. View at Google Scholar · View at Scopus
  5. C. L. Carter, C. Allen, and D. E. Henson, “Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases,” Cancer, vol. 63, no. 1, pp. 181–187, 1989. View at Google Scholar · View at Scopus
  6. V. Le Doussal, M. Tubiana-Hulin, S. Friedman, K. Hacene, F. Spyratos, and M. Brunet, “Prognostic value of histologic grade nuclear components of Scarff-Bloom-Richardson (SBR). An improved score modification based on a multivariate analysis of 1262 invasive ductal breast carcinomas,” Cancer, vol. 64, no. 9, pp. 1914–1921, 1989. View at Google Scholar · View at Scopus
  7. P. P. Rosen, S. Groshen, P. E. Saigo, D. W. Kinne, and S. Hellman, “Pathological prognostic factors in stage I (T1N0M0) and stage II (T1N1M0) breast carcinoma: A study of 644 patients with median follow-up of 18 years,” Journal of Clinical Oncology, vol. 7, no. 9, pp. 1239–1251, 1989. View at Google Scholar · View at Scopus
  8. T. Kato, S. Kameoka, T. Kimura, S. Tanaka, T. Nishikawa, and M. Kobayashi, “p53, mitosis, apoptosis and necrosis as prognostic indicators of long-term survival in breast cancer,” Anticancer Research, vol. 22, no. 2 B, pp. 1105–1112, 2002. View at Google Scholar · View at Scopus
  9. P. R. B. Kitchen, H. J. Smith, M. A. Henderson et al., “Tubular carcinoma of the breast: Prognosis and response to adjuvant systemic therapy,” Australian and New Zealand Journal of Surgery, vol. 71, no. 1, pp. 27–31, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. M. H. Galea, R. W. Blamey, C. E. Elston, and I. O. Ellis, “The Nottingham prognostic index in primary breast cancer,” Breast Cancer Research and Treatment, vol. 22, no. 3, pp. 207–219, 1992. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Tai, E. Yu, R. Shiels et al., “Short- and long-term cause-specific survival of patients with inflammatory breast cancer,” BMC Cancer, vol. 5, article 137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Fisher, C. Redmond, E. R. Fisher, and R. Caplan, “Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06.,” Journal of Clinical Oncology, vol. 6, no. 7, pp. 1076–1087, 1988. View at Google Scholar · View at Scopus
  13. S. G. Hilsenbeck, P. M. Ravdin, C. A. De Moor, G. C. Chamness, C. K. Osborne, and G. M. Clark, “Time-dependence of hazard ratios for prognostic factors in primary breast cancer,” Breast Cancer Research and Treatment, vol. 52, no. 1–3, pp. 227–237, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. “Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group,” The Lancet, vol. 351, pp. 1451–1467, 1998.
  15. B. Fisher, J. P. Costantino, D. L. Wickerham et al., “Tamoxifen for prevention of breast cancer: Report of the National Surgical Adjuvant Breast and Bowel Project P-1 study,” Journal of the National Cancer Institute, vol. 90, no. 18, pp. 1371–1388, 1998. View at Google Scholar · View at Scopus
  16. B. A. Gusterson, R. D. Gelber, A. Goldhirsch et al., “Prognostic importance of c-erbB-2 expression in breast cancer,” Journal of Clinical Oncology, vol. 10, no. 7, pp. 1049–1056, 1992. View at Google Scholar · View at Scopus
  17. R. Vera, J. L. Albanell, and B. Lirola, “HER2 overexpression as a predictor of survival in a trial comparing adjuvant FAC and CMF in breast cancer,” Proceedings of the American Society of Clinical Oncology, vol. 18, p. 71a, 1999. View at Google Scholar
  18. M. J. Ellis, A. Coop, B. Singh et al., “Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: Evidence from a phase III randomized trial,” Journal of Clinical Oncology, vol. 19, no. 18, pp. 3808–3816, 2001. View at Google Scholar · View at Scopus
  19. M. A. Cobleigh, C. L. Vogel, D. Tripathy et al., “Efficacy and safety of Herceptin (humanized anti-HER2 antibody) as a single agent in 222 women with HER2 overexpression who relapsed following chemotherapy for metastatic breast cancer,” Proceedings of the American Society of Clinical Oncology, vol. 17, p. 97a, 1998. View at Google Scholar
  20. R. W. Brown, D. C. Allred, G. M. Clark, C. K. Osborne, and S. G. Hilsenbeck, “Prognostic value of Ki-67 compared to S-Phase fraction in axillary node-negative breast cancer,” Clinical Cancer Research, vol. 2, no. 3, pp. 585–592, 1996. View at Google Scholar · View at Scopus
  21. W. J. Louwman, M. W. P. M. Van Beek, R. F. M. Schapers et al., “Long-term survival of T1 and T2 lymph node-negative breast cancer patients according to mitotic activity index: A population-based study,” International Journal of Cancer, vol. 118, no. 9, pp. 2310–2314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Hutchins, S. Green, P. Ravdin et al., “CMF versus CAF with and without tamoxifen in high-risk node-negative breast cancer patients and a natural history follow-up study in low-risk node-negative patients: first results of intergroup trial INT 0102,” Proceedings of the American Society of Clinical Oncology, vol. 17, p. 2, 1998. View at Google Scholar
  23. M. J. Van De Vijver, Y. D. He, L. J. Van 'T Veer et al., “A gene-expression signature as a predictor of survival in breast cancer,” New England Journal of Medicine, vol. 347, no. 25, pp. 1999–2009, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Berclaz, S. Li, K. N. Price et al., “Body mass index as a prognostic feature in operable breast cancer: the International Breast Cancer Study Group experience,” Annals of Oncology, vol. 15, no. 6, pp. 875–884, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Kroman, M. B. Jensen, J. Wohlfahrt, H. T. Mouridsen, P. K. Andersen, and M. Melbye, “Factors influencing the effect of age on prognosis in breast cancer: population based study,” British Medical Journal, vol. 320, no. 7233, pp. 474–478, 2000. View at Google Scholar · View at Scopus
  26. R. A. Brito, V. Valero, A. U. Buzdar et al., “Long-term results of combined-modality therapy for locally advanced breast cancer with ipsilateral supraclavicular metastases: the University of Texas M.D. Anderson Cancer Center experience,” Journal of Clinical Oncology, vol. 19, no. 3, pp. 628–633, 2001. View at Google Scholar · View at Scopus
  27. E. Montagna, V. Bagnardi, N. Rotmensz et al., “Factors that predict early treatment failure for patients with locally advanced (T4) breast cancer,” British Journal of Cancer, vol. 98, no. 11, pp. 1745–1752, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. H. S. Lee, S. E. Pinder, R. D. Macmillan et al., “Prognostic value of lymphovascular invasion in women with lymph node negative invasive breast carcinoma,” European Journal of Cancer, vol. 42, no. 3, pp. 357–362, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Gruber, B. F. Cole, M. Castiglione-Gertsch et al., “Extracapsular tumor spread and the risk of local, axillary and supraclavicular recurrence in node-positive, premenopausal patients with breast cancer,” Annals of Oncology, vol. 19, no. 8, pp. 1393–1401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. K. Tandon, G. M. Clark, G. C. Chamness, A. Ullrich, and W. L. McGuire, “HER-2/neu oncogene protein and prognosis in breast cancer,” Journal of Clinical Oncology, vol. 7, no. 8, pp. 1120–1128, 1989. View at Google Scholar · View at Scopus
  31. S. Toikkanen, H. Helin, J. Isola, and H. Joensuu, “Prognostic significance of HER-2 oncoprotein expression in breast cancer: a 30-year follow-up,” Journal of Clinical Oncology, vol. 10, no. 7, pp. 1044–1048, 1992. View at Google Scholar · View at Scopus