Table of Contents
ISRN Chromatography
Volume 2012 (2012), Article ID 838432, 9 pages
http://dx.doi.org/10.5402/2012/838432
Research Article

A QSRR Modeling of Hazardous Psychoactive Designer Drugs Using GA-PlS and L-M ANN

1Faculty of Sciences, Islamic Azad University, South Tehran Branch, Tehran, Iran
2Faculty of Science, Islamic Azad University, Ilam Branch, Ilam, Iran

Received 29 January 2012; Accepted 5 March 2012

Academic Editors: I. Brondz and D. Gavril

Copyright © 2012 Hamzeh Karimi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Sauer, K. Hoffmann, U. Schimmel, and F. T. Peters, “Acute poisoning involving the pyrrolidinophenone-type designer drug 4′-methyl-alpha-pyrrolidinohexanophenone (MPHP),” Forensic Science International, vol. 208, no. 1–3, pp. e20–e25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Vardakou, C. Pistos, and C. Spiliopoulou, “Drugs for youth via internet and the example of mephedrone,” Toxicology Letters, vol. 201, no. 3, pp. 191–195, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. T. J. Kauppila, A. Flink, M. Haapala et al., “Desorption atmospheric pressure photoionization-mass spectrometry in routine analysis of confiscated drugs,” Forensic Science International, vol. 210, no. 1–3, pp. 206–212, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. Reepmeyer, J. T. Woodruff, and D. A. d'Avignon, “Structure elucidation of a novel analogue of sildenafil detected as an adulterant in an herbal dietary supplement,” Journal of Pharmaceutical and Biomedical Analysis, vol. 43, no. 5, pp. 1615–1621, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. B. H. Chen, J. T. Liu, W. X. Chen et al., “A general approach to the screening and confirmation of tryptamines and phenethylamines by mass spectral fragmentation,” Talanta, vol. 74, no. 4, pp. 512–517, 2008. View at Google Scholar · View at Scopus
  6. L. F. Martins, M. Yegles, H. Chung, and R. Wennig, “Sensitive, rapid and validated gas chromatography/negative ion chemical ionization-mass spectrometry assay including derivatisation with a novel chiral agent for the enantioselective quantification of amphetamine-type stimulants in hair,” Journal of Chromatography B, vol. 842, no. 2, pp. 98–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. D. Brandt, S. Freeman, I. A. Fleet, P. McGagh, and J. F. Alder, “Analytical chemistry of synthetic routes to psychoactive tryptamines Part II. Characterisation of the speeter and anthony synthetic route to N,N-dialkylated tryptamines using GC-EI-ITMS, ESI-TQ-MS-MS and NMR,” Analyst, vol. 130, no. 3, pp. 330–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Gottardo, F. Bortolotti, G. de Paoli, J. P. Pascali, I. Mikšíkb, and F. Tagliaro, “Hair analysis for illicit drugs by using capillary zone electrophoresis-electrospray ionization-ion trap mass spectrometry,” Journal of Chromatography A, vol. 1159, no. 1-2, pp. 185–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Matsumoto, R. Kikura-Hanajiri, H. Kamakura, N. Kawahara, and Y. Goda, “Identification of N-methyl-4-(3,4-methylenedioxyphenyl)butan-2-amine, distributed as MBDB,” Journal of Health Science, vol. 52, no. 6, pp. 805–810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. T. K. Spratley, P. A. Hays, L. C. Geer, S. D. Cooper, and T. D. McKibben, “Analytical profiles for five “Designer” tryptamines,” Microgram Journal, vol. 3, no. 1-2, pp. 54–68, 2005. View at Google Scholar
  11. K. Doi, M. Miyazawa, H. Fujii, and T. Kojima, “The analysis of the chemical drugs among structural isomer,” Yakugaku Zasshi, vol. 126, no. 9, pp. 815–823, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Klopman and H. Zhu, “Recent methodologies for the estimation of n-octanol/water partition coefficients and their use in the prediction of membrane transport properties of drugs,” Mini-Reviews in Medicinal Chemistry, vol. 5, no. 2, pp. 127–133, 2005. View at Google Scholar · View at Scopus
  13. K. Bodzioch, A. Durand, R. Kaliszan, T. Bączek, and Y. Vander Heyden, “Advanced QSRR modeling of peptides behavior in RPLC,” Talanta, vol. 81, no. 4-5, pp. 1711–1718, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Talevi, M. Goodarzi, E. V. Ortiz et al., “Prediction of drug intestinal absorption by new linear and non-linear QSPR,” European Journal of Medicinal Chemistry, vol. 46, no. 1, pp. 218–228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Noorizadeh and M. Noorizadeh, “QSRR-based estimation of the retention time of opiate and sedative drugs by comprehensive two-dimensional gas chromatography,” Medicinal Chemistry Research. In press.
  16. G. Carlucci, A. A. D'Archivio, M. A. Maggi, P. Mazzeo, and F. Ruggieri, “Investigation of retention behaviour of non-steroidal anti-inflammatory drugs in high-performance liquid chromatography by using quantitative structure-retention relationships,” Analytica Chimica Acta, vol. 601, no. 1, pp. 68–76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Devos and L. Duponchel, “Parallel genetic algorithm co-optimization of spectral pre-processing and wavelength selection for PLS regression,” Chemometrics and Intelligent Laboratory Systems, vol. 107, no. 1, pp. 50–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. V. K. Gupta, H. Khani, B. Ahmadi-Roudi, S. Mirakhorli, E. Fereyduni, and S. Agarwal, “Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks,” Talanta, vol. 83, no. 3, pp. 1014–1022, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Ferrand, B. Huquet, S. Barbey et al., “Determination of fatty acid profile in cow's milk using mid-infrared spectrometry: interest of applying a variable selection by genetic algorithms before a PLS regression,” Chemometrics and Intelligent Laboratory Systems, vol. 106, no. 2, pp. 183–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Takahashi, M. Nagashima, J. Suzuki, T. Seto, I. Yasuda, and T. Yoshida, “Creation and application of psychoactive designer drugs data library using liquid chromatography with photodiode array spectrophotometry detector and gas chromatography-mass spectrometry,” Talanta, vol. 77, no. 4, pp. 1245–1272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Todeschini, V. Consonni, A. Mauri et al., “DRAGON-Software for the calculation of molecular descriptors,” Version 3.0 for Windows, 2003.
  22. R. Leardi, “Genetic algorithms,” in Comprehensive Chemometrics, S. D. Brown, R. Tauler, and B. Walczak, Eds., cahpter 1.20, pp. 631–653, Elsevier, 2009. View at Google Scholar
  23. S. Riahi, E. Pourbasheer, M. R. Ganjali, and P. Norouzi, “Investigation of different linear and nonlinear chemometric methods for modeling of retention index of essential oil components: concerns to support vector machine,” Journal of Hazardous Materials, vol. 166, no. 2-3, pp. 853–859, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Zhou, Z. Li, Z. Dai et al., “QSAR modeling of peptide biological activity by coupling support vector machine with particle swarm optimization algorithm and genetic algorithm,” Journal of Molecular Graphics and Modelling, vol. 29, no. 2, pp. 188–196, 2010. View at Google Scholar · View at Scopus
  25. N. Savory, K. Abe, K. Sode, and K. Ikebukuro, “Selection of DNA aptamer against prostate specific antigen using a genetic algorithm and application to sensing,” Biosensors and Bioelectronics, vol. 26, no. 4, pp. 1386–1391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. D. L. Tong and A. C. Schierz, “Hybrid genetic algorithm-neural network: feature extraction for unpreprocessed microarray data,” Artificial Intelligence in Medicine, vol. 53, no. 1, pp. 47–56, 2011. View at Google Scholar
  27. M. Serati, S. Salvatore, G. Siesto et al., “Urinary symptoms and urodynamic findings in women with pelvic organ prolapse: is there a correlation? results of an artificial neural network analysis,” European Urology, vol. 60, no. 2, pp. 253–260, 2011. View at Google Scholar · View at Scopus
  28. R. E. Hoffman, U. Grasemann, R. Gueorguieva, D. Quinlan, D. Lane, and R. Miikkulainen, “Using computational patients to evaluate illness mechanisms in schizophrenia,” Biological Psychiatry, vol. 69, no. 10, pp. 997–1005, 2011. View at Publisher · View at Google Scholar · View at Scopus