Table of Contents Author Guidelines Submit a Manuscript
ISRN Molecular Biology
Volume 2012 (2012), Article ID 839427, 9 pages
Research Article

Isolation of Alcohol Dehydrogenase cDNA and Basal Regulatory Region from Metroxylon sagu

Genetic Engineering Laboratory, Department of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, 94300 Sarawak, Malaysia

Received 19 June 2012; Accepted 10 July 2012

Academic Editors: A. Montecucco and T. Tozaki

Copyright © 2012 Ching Ching Wee and Hairul Azman Roslan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Alcohol dehydrogenase (Adh) is a versatile enzyme involved in many biochemical pathways in plants such as in germination and stress tolerance. Sago palm is plant with much importance to the state of Sarawak as one of the most important crops that bring revenue with the advantage of being able to withstand various biotic and abiotic stresses such as heat, pathogens, and water logging. Here we report the isolation of sago palm Adh cDNA and its putative promoter region via the use of rapid amplification of cDNA ends (RACE) and genomic walking. The isolated cDNA was characterized and determined to be 1464 bp long encoding for 380 amino acids. BLAST analysis showed that the Adh is similar to the Adh1 group with 91% and 85% homology with Elaeis guineensis and Washingtonia robusta, respectively. The putative basal msAdh1 regulatory region was further determined to contain promoter signals of TATA and AGGA boxes and predicted amino acids analyses showed several Adh-specific motifs such as the two zinc-binding domains that bind to the adenosine ribose of the coenzyme and binding to alcohol substrate. A phylogenetic tree was also constructed using the predicted amino acid showed clear separation of Adh from bacteria and clustered within the plant Adh group.