Table of Contents
ISRN Materials Science
Volume 2012 (2012), Article ID 863025, 18 pages
http://dx.doi.org/10.5402/2012/863025
Review Article

Metastable Metal Hydrides for Hydrogen Storage

Department of Sustainable Energy Technologies, Brookhaven National Laboratory, Upton, NY 11973, USA

Received 3 October 2012; Accepted 29 October 2012

Academic Editors: G. C. Mather and A. O. Neto

Copyright © 2012 Jason Graetz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Basic research needs for electrical energy storage,” Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, US Department of Energy, 2007.
  2. M. Hirscher and B. Panella, “Hydrogen storage in metal-organic frameworks,” Scripta Materialia, vol. 56, no. 10, pp. 809–812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. G. Wong-Foy, A. J. Matzger, and O. M. Yaghi, “Exceptional H2 saturation uptake in microporous metal-organic frameworks,” Journal of the American Chemical Society, vol. 128, no. 11, pp. 3494–3495, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Dailly, J. J. Vajo, and C. C. Ahn, “Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphthalenedicarboxylate,” Journal of Physical Chemistry B, vol. 110, no. 3, pp. 1099–1101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Panella, M. Hirscher, H. Pütter, and U. Müller, “Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared,” Advanced Functional Materials, vol. 16, no. 4, pp. 520–524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Chahine and T. K. Bose, “Low-pressure adsorption storage of hydrogen,” International Journal of Hydrogen Energy, vol. 19, no. 2, pp. 161–164, 1994. View at Google Scholar · View at Scopus
  7. B. Panella, M. Hirscher, and S. Roth, “Hydrogen adsorption in different carbon nanostructures,” Carbon, vol. 43, no. 10, pp. 2209–2214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Lin, J. Jia, X. Zhao et al., “High H2 adsorption by coordination-framework materials,” Angewandte Chemie, vol. 45, no. 44, pp. 7358–7364, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Bogdanović and M. Schwickardi, “Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials,” Journal of Alloys and Compounds, vol. 253-254, pp. 1–9, 1997. View at Google Scholar · View at Scopus
  10. J. Graetz, Y. Lee, J. J. Reilly, S. Park, and T. Vogt, “Structures and thermodynamics of the mixed alkali alanates,” Physical Review B, vol. 71, no. 18, Article ID 184115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. L. M. Arnbjerg and T. R. Jensen, “New compounds in the potassium-aluminium-hydrogen system observed during release and uptake of hydrogen,” International Journal of Hydrogen Energy, vol. 37, no. 1, pp. 345–356, 2012. View at Google Scholar
  12. G. Sandrock, J. Reilly, J. Graetz, W. M. Zhou, J. Johnson, and J. Wegrzyn, “Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles,” Applied Physics A, vol. 80, no. 4, pp. 687–690, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Fakioǧlu, Y. Yürüm, and T. N. Veziroǧlu, “A review of hydrogen storage systems based on boron and its compounds,” International Journal of Hydrogen Energy, vol. 29, no. 13, pp. 1371–1376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. F. H. Stephens, V. Pons, and R. T. Baker, “Ammonia-borane: the hydrogen source par excellence?” Dalton Transactions, no. 25, pp. 2613–2626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Staubitz, A. P. M. Robertson, and I. Manners, “Ammonia-Borane and related compounds as dihydrogen sources,” Chemical Reviews, vol. 110, no. 7, pp. 4079–4124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. N. C. Smythe and J. C. Gordon, “Ammonia borane as a hydrogen carrier: dehydrogenation and regeneration,” European Journal of Inorganic Chemistry, no. 4, pp. 509–521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Hua, R. Ahluwalia, J. -K Peng et al., “Technical assessment of compressed hydrogen storage tank systems for automotive applications,” U.S. Department of Energy Report prepare by Argonne National Laboratory, 2010, http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/compressedtank_storage.pdf/.
  18. J. W. Turley and H. W. Rinn, “The crystal structure of aluminum hydride,” Inorganic Chemistry, vol. 8, no. 1, pp. 18–22, 1969. View at Google Scholar · View at Scopus
  19. J. Graetz and J. J. Reilly, “Decomposition kinetics of the AlH3 polymorphs,” Journal of Physical Chemistry B, vol. 109, no. 47, pp. 22181–22185, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Graetz and J. J. Reilly, “Thermodynamics of the α, β and γ polymorphs of AlH3,” Journal of Alloys and Compounds, vol. 424, no. 1-2, pp. 262–265, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. W. Brinks, A. Istad-Lem, and B. C. Hauback, “Mechanochemical synthesis and crystal structure of α-AlD3 and α-AlD3,” Journal of Physical Chemistry B, vol. 110, no. 51, pp. 25833–25837, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. H. W. Brinks, W. Langley, C. M. Jensen, J. Graetz, J. J. Reilly, and B. C. Hauback, “Synthesis and crystal structure of β-AlD3,” Journal of Alloys and Compounds, vol. 433, no. 1-2, pp. 180–183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. V. A. Yartys, R. V. Denys, J. P. Maehlen et al., “Double-bridge bonding of aluminium and hydrogen in the crystal structure of γ-AlH3,” Inorganic Chemistry, vol. 46, no. 4, pp. 1051–1055, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. H. W. Brinks, C. Brown, C. M. Jensen, J. Graetz, J. J. Reilly, and B. C. Hauback, “The crystal structure of γ-AlD3,” Journal of Alloys and Compounds, vol. 441, no. 1-2, pp. 364–367, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Graetz, J. J. Reilly, J. G. Kulleck, and R. C. Bowman, “Kinetics and thermodynamics of the aluminum hydride polymorphs,” Journal of Alloys and Compounds, vol. 446-447, pp. 271–275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S.-J. Hwang, R. C. Bowman, J. Graetz, J. J. Reilly, W. Langley, and C. M. Jensen, “NMR studies of the aluminum hydride phases and their stabilities,” Journal of Alloys and Compounds, vol. 446, pp. 290–295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Tkacz, T. Palasyuk, J. Graetz, and S. Saxena, “High-pressure Raman spectroscopy study of α and γ polymorphs of AlH3,” Journal of Raman Spectroscopy, vol. 39, no. 7, pp. 922–927, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Graetz, J. J. Reilly, V. A. Yartys et al., “Aluminum hydride as a hydrogen and energy storage material: past, present and future,” Journal of Alloys and Compounds, vol. 509, no. 2, supplement, pp. S517–S528, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Blanchard, H. W. Brinks, B. C. Hauback, P. Norby, and J. Muller, “Isothermal decomposition of LiAlD4 with and without additives,” Journal of Alloys and Compounds, vol. 404-406, pp. 743–747, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Andreasen, T. Vegge, and A. S. Pedersen, “Dehydrogenation kinetics of as-received and ball-milled LiAlH4,” Journal of Solid State Chemistry, vol. 178, no. 12, pp. 3672–3678, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Andreasen, “Effect of Ti-doping on the dehydrogenation kinetic parameters of lithium aluminum hydride,” Journal of Alloys and Compounds, vol. 419, no. 1-2, pp. 40–44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. K. M. Mackay, Hydrogen Compounds of the Metallic Elements, Spon, London, UK, 1966.
  33. T. N. Dymova, D. P. Aleksandrov, V. N. Konoplev, T. A. Silina, and A. S. Sizareva, “Spontaneous and thermal-decomposition of lithium tetrahydroaluminate LiAlH4—the promoting effect of mechanochemical action on the process,” Koordinatsionnaya Khimiya, vol. 20, no. 4, pp. 279–285, 1994. View at Google Scholar
  34. T. N. Dymova, D. P. Aleksandrov, V. N. Konoplev, and T. A. Silina, “Novel view of the nature of the chemical-composition and phase-composition modifications in lithium hydridoaluminates LiAlH4 and LiAlH6 on heating,” Koordinatsionnaya Khimiya, vol. 21, no. 3, pp. 175–182, 1995. View at Google Scholar
  35. M. Fichtner and O. Fuhr, “Synthesis and structures of magnesium alanate and two solvent adducts,” Journal of Alloys and Compounds, vol. 345, no. 1-2, pp. 286–296, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. O. M. Løvvik, S. M. Opalka, H. W. Brinks, and B. C. Hauback, “Crystal structure and thermodynamic stability of the lithium alanates LiAlH4 and Li3AlH6,” Physical Review B, vol. 69, no. 13, Article ID 134117, 9 pages, 2004. View at Publisher · View at Google Scholar
  37. M. Fichtner, O. Fuhr, and O. Kircher, “Magnesium alanate—a material for reversible hydrogen storage?” Journal of Alloys and Compounds, vol. 356, pp. 418–422, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Mamatha, B. Bogdanović, M. Felderhoff et al., “Mechanochemical preparation and investigation of properties of magnesium, calcium and lithium-magnesium alanates,” Journal of Alloys and Compounds, vol. 407, no. 1-2, pp. 78–86, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Wiberg and R. U. Lacal, Zeitschrift für Naturforschung, vol. 6, p. 392, 1951.
  40. D. M. Liu, Z. X. Qian, T. Z. Si, and Q. A. Zhang, “Synthesis, crystal structure and thermal decomposition of LiCa(AlH4)3,” Journal of Alloys and Compounds, vol. 520, pp. 202–206, 2012. View at Google Scholar
  41. S. I. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, and C. M. Jensen, “Complex hydrides for hydrogen storage,” Chemical Reviews, vol. 107, no. 10, pp. 4111–4132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Mamatha, C. Weidenthaler, A. Pommerin, M. Felderhoff, and F. Schüth, “Comparative studies of the decomposition of alanates followed by in situ XRD and DSC methods,” Journal of Alloys and Compounds, vol. 416, no. 1-2, pp. 303–314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. R. A. Varin and R. Parviz, “The effects of the micrometric and nanometric iron (Fe) additives on the mechanical and thermal dehydrogenation of lithium alanate (LiAlH4), its self-discharge at low temperatures and rehydrogenation,” International Journal of Hydrogen Energy, vol. 37, pp. 9088–9102, 2012. View at Google Scholar
  44. M. J. Van Setten, G. A. De Wijs, V. A. Popa, and G. Brocks, “Ab initio study of Mg (AlH4)4,” Physical Review B, vol. 72, no. 7, Article ID 073107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. G. C. Sinke, L. C. Walker, F. L. Oetting, and D. R. Stull, “Thermodynamic properties of aluminum hydride,” The Journal of Chemical Physics, vol. 47, no. 8, pp. 2759–2761, 1967. View at Google Scholar · View at Scopus
  46. L. Schlapbach, “Hydrogen as a fuel and its storage for mobility and transport,” MRS Bulletin, vol. 27, no. 9, pp. 675–676, 2002. View at Google Scholar · View at Scopus
  47. R. S. Irani, “Hydrogen storage: high-pressure gas containment,” MRS Bulletin, vol. 27, no. 9, pp. 680–682, 2002. View at Google Scholar · View at Scopus
  48. J. Wolf, “Liquid-hydrogen technology for vehicles,” MRS Bulletin, vol. 27, no. 9, pp. 684–687, 2002. View at Google Scholar
  49. R. C. Bowman Jr. and B. Fultz, “Metallic hydrides I: hydrogen storage and other gas-phase applications,” MRS Bulletin, vol. 27, no. 9, pp. 688–693, 2002. View at Google Scholar · View at Scopus
  50. J. M. Joubert, M. Latroche, and A. Percheron-Guégan, “Metallic hydrides II: materials for electrochemical storage,” MRS Bulletin, vol. 27, no. 9, pp. 694–698, 2002. View at Google Scholar · View at Scopus
  51. E. Akiba and M. Okada, “Metallic hydrides III: body-centered-cubic solid-solution alloys,” MRS Bulletin, vol. 27, no. 9, pp. 699–703, 2002. View at Google Scholar · View at Scopus
  52. A. Züttel and S. I. Orimo, “Hydrogen in nanostructured, carbon-related, and metallic materials,” MRS Bulletin, vol. 27, no. 9, pp. 705–711, 2002. View at Google Scholar · View at Scopus
  53. B. Bogdanović and G. Sandrock, “Catalyzed complex metal hydrides,” MRS Bulletin, vol. 27, no. 9, pp. 712–716, 2002. View at Google Scholar · View at Scopus
  54. O. Stecher and E. Wiberg, “A non-volatile, polymer aluminium hydrogen (AlH3)x and several volatile compounds of monomeric AlH3,” Berichte der Deutschen Chemischen Gesellschaft, vol. 75, pp. 2003–2012, 1942. View at Google Scholar
  55. A. E. Finholt, A. C. Bond, and H. I. Schlesinger, “Lithium aluminum hydride, aluminum hydride and lithium gallium hydride, and some of their applications in organic and inorganic chemistry,” Journal of the American Chemical Society, vol. 69, no. 5, pp. 1199–1203, 1947. View at Google Scholar · View at Scopus
  56. G. Chizinsky, G. G. Evans, T. R. P. Gibb, and M. J. Rice, “Non-solvated aluminum hydride,” Journal of the American Chemical Society, vol. 77, no. 11, pp. 3164–3165, 1955. View at Google Scholar · View at Scopus
  57. F. M. Brower, N. E. Matzek, P. F. Reigler et al., “Preparation and properties of aluminum hydride,” Journal of the American Chemical Society, vol. 98, no. 9, pp. 2450–2453, 1976. View at Google Scholar · View at Scopus
  58. H. Nöth and E. Wiberg, Forschr Und Forsch, vol. 8, no. 3, p. 344, 1966.
  59. B. M. Bulychev, A. G. Burlakova, and P. A. Storozhenko, “Complex compounds of aluminum hydride ethoxide with mixed aluminum and boron hydrides with lithium and magnesium: compositions, physicochemical properties, and synthesis of unsolvated aluminum hydride,” Zhurnal Neorganicheskoj Khimii, vol. 43, no. 5, pp. 829–836, 1998. View at Google Scholar · View at Scopus
  60. H. C. Brown and N. M. Yoon, “Selective reductions. X. Reaction of aluminum hydride with selected organic compounds containing representative functional groups. Comparison of the reducing characteristics of lithium aluminum hydride and its derivatives,” Journal of the American Chemical Society, vol. 88, no. 7, pp. 1464–1472, 1966. View at Google Scholar · View at Scopus
  61. C. W. Heitsch, C. E. Nordman, and R. W. Parry, “The crystal structure and dipole moment in solution of the compound AlH3·2n(CH3)3,” Inorganic Chemistry, vol. 2, no. 3, pp. 508–512, 1963. View at Google Scholar · View at Scopus
  62. F. Dallacker, K. W. Glombitza, and M. Lipp, “Derivate des methylendioxybenzols, III. Darstellung des 45-methylendioxy-phthalaldehyds,” Justus Liebigs Annalen der Chemie, vol. 643, no. 1–3, pp. 67–82, 1961. View at Google Scholar
  63. L. W. Trevoy and W. G. Brown, “Mechanism of lithium aluminum hydride reactions,” Journal of the American Chemical Society, vol. 71, no. 5, pp. 1675–1678, 1949. View at Google Scholar · View at Scopus
  64. E. C. Ashby, J. R. Sanders, P. Claudy, and R. Schwartz, “Diethyl ether soluble aluminum hydride,” Journal of the American Chemical Society, vol. 95, no. 19, pp. 6485–6486, 1973. View at Google Scholar · View at Scopus
  65. A. E. Finholt, G. D. Barbaras, G. K. Barbaras, G. Urry, T. Wartik, and H. I. Schlesinger, “The preparation of sodium and calcium aluminium hydrides,” Journal of Inorganic and Nuclear Chemistry, vol. 1, no. 4-5, pp. 317–325, 1955. View at Google Scholar · View at Scopus
  66. W. Schwab and K. Wintersberger, “Uber darstellung und eigenschaften von calcium-aluminiumhydrid Ca(AlH4)4,” Zeitschrift für Naturforschung, vol. 8, no. 11, pp. 690–691, 1953. View at Google Scholar
  67. B. M. Bulychev, A. V. Golubeva, P. A. Storozhenko, and K. N. Semenenko, “Synthesis of aluminum hydride compounds from sodium hydride and aluminum trichloride in diethyl ether,” Zhurnal Neorganicheskoj Khimii, vol. 43, no. 8, pp. 1242–1245, 1998. View at Google Scholar · View at Scopus
  68. E. C. Ashby, “A direct route to complex metal hydrides,” Chemistry & Industry, vol. 5, pp. 208–209, 1962. View at Google Scholar
  69. E. C. Ashby, G. J. Brendel, and H. E. Redman, “Direct synthesis of complex metal hydrides,” Inorganic Chemistry, vol. 2, no. 3, pp. 499–504, 1963. View at Google Scholar · View at Scopus
  70. B. Bogdanović, R. A. Brand, A. Marjanović, M. Schwickardi, and J. Tölle, “Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials,” Journal of Alloys and Compounds, vol. 302, no. 1-2, pp. 36–58, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. A. E. Finholt, A. C. Bond, and H. I. Schlesinger, “Lithium aluminum hydride, aluminum hydride and lithium gallium hydride, and some of their applications in organic and inorganic chemistry,” Journal of the American Chemical Society, vol. 69, no. 5, pp. 1199–1203, 1947. View at Google Scholar · View at Scopus
  72. M. Fichtner, C. Frommen, and O. Fuhr, “Synthesis and properties of calcium alanate and two solvent adducts,” Inorganic Chemistry, vol. 44, no. 10, pp. 3479–3484, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. E. Wiberg and R. Bauer, “Neues zur kenntnis des magnesium-aluminium-wasserstoffs Mg(AlH4)2,” Zeitschrift für Naturforschung, vol. 7, no. 2, pp. 131–132, 1952. View at Google Scholar
  74. M. Fichtner, C. Frommen, and O. Fuhr, “Synthesis and properties of calcium alanate and two solvent adducts,” Inorganic Chemistry, vol. 44, no. 10, pp. 3479–3484, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. T. N. Dymova, V. N. Konoplev, A. S. Sizareva, and D. P. Aleksandrov, “Magnesium tetrahydroaluminate: solid-phase formation with mechanochemical activation of a mixture of aluminum and magnesium hydrides,” Koordinatsionnaya Khimiya, vol. 25, no. 5, pp. 312–315, 1999. View at Google Scholar · View at Scopus
  76. H. Kabbour, C. C. Ahn, S. J. Hwang, R. C. Bowman Jr., and J. Graetz, “Direct synthesis and NMR characterization of calcium alanate,” Journal of Alloys and Compounds, vol. 446, pp. 264–266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. G. W. Schaeffer, J. S. Roscoe, and A. C. Stewart, “The reduction of iron (III) chloride with lithium aluminohydride and lithium borohydride: iron (II) borohydride,” Journal of the American Chemical Society, vol. 78, no. 4, pp. 729–733, 1956. View at Google Scholar · View at Scopus
  78. W. Grochala and P. P. Edwards, “Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen,” Chemical Reviews, vol. 104, no. 3, pp. 1283–1315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Orimo, Y. Nakamori, T. Kato, C. Brown, and C. M. Jensen, “Intrinsic and mechanically modified thermal stabilities of α-, β- and γ-aluminum trihydrides AlH3,” Applied Physics A, vol. 83, no. 1, pp. 5–8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Sartori, S. M. Opalka, O. M. Løvvik, M. N. Guzik, X. Tang, and B. C. Hauback, “Experimental studies of α-AlD3 and α′-AlD3 versus first-principles modelling of the alane isomorphs,” Journal of Materials Chemistry, vol. 18, no. 20, pp. 2361–2370, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Tomiyasu, T. Sato, K. Horigane, S. Orimo, and K. Yamada, “Hydrogen release from Li alanates originates in molecular lattice instability emerging at ~100 K,” Applied Physics Letters, vol. 100, Article ID 193901, 3 pages, 2012. View at Google Scholar
  82. P. Claudy, B. Bonnetot, and J. M. Letoffe, “Preparation and physicochemical properties of magnesium alanate,” Journal of Thermal Analysis, vol. 15, no. 1, pp. 119–128, 1979. View at Publisher · View at Google Scholar · View at Scopus
  83. N. N. Mal'tseva, A. I. Golovanova, T. N. Dymova, and D. P. Aleksandrov, “Solid-phase formation of calcium hydridoaluminates Ca(AlH4)2 and CaHAlH4 upon mechanochemical activation or heating of mixtures of calcium hydride with aluminum chloride,” Russian Journal of Inorganic Chemistry, vol. 46, no. 12, pp. 1793–1797, 2001. View at Google Scholar · View at Scopus
  84. T. N. Dymova, D. P. Aleksandrov, V. N. Konoplev, T. A. Silina, and N. T. Kuznetsov, “Solid-phase reactions of aluminum (AlH3)x crystalline hydride—formation of alkali-metal tetrahydroaluminates and hexahydroaluminates,” Koordinatsionnaya Khimiya, vol. 19, no. 7, pp. 529–534, 1993. View at Google Scholar
  85. B. Bogdanović, R. A. Brand, A. Marjanović, M. Schwickardi, and J. Tölle, “Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials,” Journal of Alloys and Compounds, vol. 302, no. 1-2, pp. 36–58, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. G. S. Sandrock, L. Suda, and L. Schlapbach, “Applications,” in Hydrogen in Intermetallic Compounds II, L. Schlapbach, Ed., pp. 197–258, Springer, Berlin, Germany, 1992. View at Google Scholar
  87. W. de Graff, [Ph.D. thesis], University of Amsterdam, Amsterdam, The Netherlands, 1960.
  88. B. Baranowski, “Thermodynamics of metal-hydrogen systems at high-pressures,” The Journal of Physical Chemistry, vol. 76, no. 8, pp. 714–724, 1972. View at Google Scholar
  89. J. Graetz, S. Chaudhuri, Y. Lee, T. Vogt, J. T. Muckerman, and J. J. Reilly, “Pressure-induced structural and electronic changes in α-AlH3,” Physical Review B, vol. 74, no. 21, Article ID 214114, 7 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Tkacz, S. Filipek, and B. Baranowski, “High-pressure synthesis of aluminum-hydride from the elements,” Polish Journal of Chemistry, vol. 57, no. 4–6, pp. 651–653, 1983. View at Google Scholar
  91. B. Baranowski and M. Z. Tkacz, “The equilibrium between solid aluminum-hydride and gaseous-hydrogen,” The Journal of Physical Chemistry, vol. 135, pp. 27–38, 1983. View at Google Scholar
  92. S. K. Konovalov and B. M. Bulychev, “The P,T-state diagram and solid phase synthesis of aluminium hydride,” Inorganic Chemistry, vol. 34, no. 1, pp. 172–175, 1995. View at Google Scholar · View at Scopus
  93. H. Saitoh, A. MacHida, Y. Katayama, and K. Aoki, “Formation and decomposition of AlH3 in the aluminum-hydrogen system,” Applied Physics Letters, vol. 93, no. 15, Article ID 151918, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Graetz, “New approaches to hydrogen storage,” Chemical Society Reviews, vol. 38, no. 1, pp. 73–82, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. G. Sandrock, K. Gross, and G. Thomas, “Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates,” Journal of Alloys and Compounds, vol. 339, no. 1-2, pp. 299–308, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. M. McCarty Jr., J. N. Maycock, and V. R. Pai Verneker, “Thermal decomposition of LiAlH4,” Journal of Physical Chemistry, vol. 72, no. 12, pp. 4009–4014, 1968. View at Google Scholar · View at Scopus
  97. G. Sandrock, K. Gross, G. Thomas, C. Jensen, D. Meeker, and S. Takara, “Engineering considerations in the use of catalyzed sodium alanates for hydrogen storage,” Journal of Alloys and Compounds, vol. 330, pp. 696–701, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. S.-S. Liu, L.-X. Sun, Y. Zhang et al., “Effect of ball milling time on the hydrogen storage properties of TiF3-doped LiAlH4,” International Journal of Hydrogen Energy, vol. 34, no. 19, pp. 8079–8085, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Kojima, Y. Kawai, M. Matsumoto, and T. Haga, “Hydrogen release of catalyzed lithium aluminum hydride by a mechanochemical reaction,” Journal of Alloys and Compounds, vol. 462, no. 1-2, pp. 275–278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Chen, N. Kuriyama, Q. Xu, H. T. Takeshita, and T. Sakai, “Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6,” Journal of Physical Chemistry B, vol. 105, no. 45, pp. 11214–11220, 2001. View at Publisher · View at Google Scholar · View at Scopus
  101. D. Blanchard, H. W. Brinks, B. C. Hauback, P. Norby, and J. Muller, “Isothermal decomposition of LiAlD4 with and without additives,” Journal of Alloys and Compounds, vol. 404–406, pp. 743–747, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. J. R. A. Fernandez, F. Aguey-Zinsou, M. Elsaesser et al., “Mechanical and thermal decomposition of LiAlH4 with metal halides,” International Journal of Hydrogen Energy, vol. 32, no. 8, pp. 1033–1040, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. Z. Xueping and L. Shenglin, “Study on hydrogen storage properties of LiAlH4,” Journal of Alloys and Compounds, vol. 481, no. 1-2, pp. 761–763, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Ismail, Y. Zhao, X. B. Yu, and S. X. Dou, “Effects of NbF5 addition on the hydrogen storage properties of LiAlH4,” International Journal of Hydrogen Energy, vol. 35, no. 6, pp. 2361–2367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. T. Sun, C. K. Huang, H. Wang, L. X. Sun, and M. Zhu, “The effect of doping NiCl2 on the dehydrogenation properties of LiAlH4,” International Journal of Hydrogen Energy, vol. 33, no. 21, pp. 6216–6221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. R. A. Varin, L. Zbroniec, T. Czujko, and Z. S. Wronski, “The effects of nanonickel additive on the decomposition of complex metal hydride LiAlH4 (lithium alanate),” International Journal of Hydrogen Energy, vol. 36, no. 1, pp. 1167–1176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. L. Hima Kumar, B. Viswanathan, and S. Srinivasa Murthy, “Dehydriding behaviour of LiAlH4—the catalytic role of carbon nanofibres,” International Journal of Hydrogen Energy, vol. 33, no. 1, pp. 366–373, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. P. J. Herley and O. Christofferson, “Decomposition of α-aluminum hydride powder. 3. Simultaneous photolytic-thermal decomposition,” Journal of Physical Chemistry, vol. 85, no. 13, pp. 1887–1892, 1981. View at Google Scholar · View at Scopus
  109. Rafi-Ud-Din, L. Zhang, L. Ping, and Q. Xuanhui, “Catalytic effects of nano-sized TiC additions on the hydrogen storage properties of LiAlH4,” Journal of Alloys and Compounds, vol. 508, no. 1, pp. 119–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. H. Clasen, Germany Patent, 1141, 623, 1962.
  111. H. K. Birnbaum, C. Buckley, F. Zeides et al., “Hydrogen in aluminum,” Journal of Alloys and Compounds, vol. 253-254, pp. 260–264, 1997. View at Google Scholar · View at Scopus
  112. R. Zidan, B. L. Garcia-Diaz, C. S. Fewox, A. C. Stowe, J. R. Gray, and A. G. Harter, “Aluminium hydride: a reversible material for hydrogen storage,” Chemical Communications, no. 25, pp. 3717–3719, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. M. J. Martinez-Rodriguez, B. L. Garcia-Diaz, J. A. Teprovich, D. A. Knight, and R. Zidan, “Advances in the electrochemical regeneration of aluminum hydride,” Applied Physics A, vol. 106, no. 3, pp. 545–550, 2012. View at Google Scholar
  114. E. C. Ashby, “The direct synthesis of amine alanes,” Journal of the American Chemical Society, vol. 86, no. 9, pp. 1882–1883, 1964. View at Google Scholar · View at Scopus
  115. J. Graetz, S. Chaudhuri, J. Wegrzyn et al., “Direct and reversible synthesis of AlH3-triethylenediamine from Al and H2,” Journal of Physical Chemistry C, vol. 111, no. 51, pp. 19148–19152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. D. Lacina, J. Wegrzyn, J. Reilly, Y. Celebi, and J. Graetz, “Regeneration of aluminium hydride using dimethylethylamine,” Energy and Environmental Science, vol. 3, no. 8, pp. 1099–1105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. D. Lacina, J. Reilly, J. Johnson, J. Wegrzyn, and J. Graetz, “The reversible synthesis of bis(quinuclidine) alane,” Journal of Alloys and Compounds, vol. 509, no. 2, pp. S654–S657, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. D. Lacina, J. Reilly, Y. Celebi, J. Wegrzyn, J. Johnson, and J. Graetz, “Regeneration of aluminum hydride using trimethylamine,” Journal of Physical Chemistry C, vol. 115, no. 9, pp. 3789–3793, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. H. Clasen, “Alanat-synthese aus den elementen und ihre bedeutung,” Angewandte Chemie, vol. 73, no. 10, pp. 322–331, 1961. View at Google Scholar
  120. J. Wang, A. D. Ebner, and J. A. Ritter, “Physiochemical pathway for cyclic dehydrogenation and rehydrogenation of LiAlH4,” Journal of the American Chemical Society, vol. 128, no. 17, pp. 5949–5954, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. J. Graetz, J. Wegrzyn, and J. J. Reilly, “Regeneration of lithium aluminum hydride,” Journal of the American Chemical Society, vol. 130, no. 52, pp. 17790–17794, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. X. Liu, G. S. McGrady, H. W. Langmi, and C. M. Jensen, “Facile cycling of Ti-doped LiAlH4 for high performance hydrogen storage,” Journal of the American Chemical Society, vol. 131, no. 14, pp. 5032–5033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. X. F. Liu, H. W. Langmi, S. D. Beattie, F. F. Azenwi, G. S. McGrady, and C. M. Jensen, “Ti-Doped LiAlH4 for hydrogen storage: synthesis, catalyst loading and cycling performance,” Journal of the American Chemical Society, vol. 133, no. 39, pp. 15593–15597, 2011. View at Google Scholar
  124. T. Q. Hua and R. K. Ahluwalia, “Alane hydrogen storage for automotive fuel cells—off-board regeneration processes and efficiencies,” International Journal of Hydrogen Energy, vol. 36, no. 23, pp. 15259–15265, 2011. View at Google Scholar
  125. R. K. Ahluwalia, T. Q. Hua, and J. K. Peng, “On-board and Off-board performance of hydrogen storage options for light-duty vehicles,” International Journal of Hydrogen Energy, vol. 37, no. 3, pp. 2891–2910, 2012. View at Publisher · View at Google Scholar · View at Scopus
  126. L. Klebanoff, “5-year review of Metal Hydride Center of Excellence,” Presentation at DOE H2 Program Annual Merritt Review, Washington, DC, USA, 2010.