Table of Contents
ISRN Nanotechnology
Volume 2012, Article ID 879480, 6 pages
http://dx.doi.org/10.5402/2012/879480
Research Article

Preparation and Ethanol Sensing Properties of ZnO Nanoparticles via a Novel Sol-Gel Method

1Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Iran
2Amirkabir University of Technology, 424 Hafez Ave, P.O. Box 15875-4413, Tehran, Iran

Received 26 October 2011; Accepted 8 December 2011

Academic Editors: R. Alexandrescu and D. Tsoukalas

Copyright © 2012 A. Ahmadi Daryakenari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Bahari Molla Mahaleh, S. K. Sadrnezhaad, and D. Hosseini, “NiO nanoparticles synthesis by chemical precipitation and effect of applied surfactant on distribution of particle size,” Journal of Nanomaterials, vol. 2008, no. 1, Article ID 470595, 4 pages, 2008. View at Publisher · View at Google Scholar
  2. J. Xu, J. Han, Y. Zhang, Y. Sun, and B. Xie, “Studies on alcohol sensing mechanism of ZnO based gas sensors,” Journal of Sensors and Actuators, B, vol. 132, no. 1, pp. 334–339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Xing, G. Chen, X. Song, X. Yuan, W. Yao, and H. Yan, “ZnO and TiO2 nanoparticles encapsulated in boron nitride nanocages,” Journal of Microelectronic Engineering, vol. 66, no. 1–4, pp. 70–76, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. H. Liao, C. H. Hsu, and D. H. Chen, “Preparation and properties of amorphous titania-coated zinc oxide nanoparticles,” Journal of Solid State Chemistry, vol. 179, no. 7, pp. 2020–2026, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Boukos, C. Chandrinou, K. Giannakopoulos, G. Pistolis, and A. Travlos, “Growth of ZnO nanorods by a simple chemical method,” Journal of Applied Physics A, vol. 88, no. 1, pp. 35–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. C. Carotta, A. Cervi, V. di Natale et al., “ZnO gas sensors: a comparison between nanoparticles and nanotetrapods-based thick films,” Journal of Sensors and Actuators, B, vol. 137, no. 1, pp. 164–169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Zi-qiang, D. Hong, L. Yan, and C. Hang, “Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO:Al thin films,” Materials Science in Semiconductor Processing, vol. 9, no. 1–3, pp. 132–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Jun and Y. Yintang, “Deposition of K-doped p type ZnO thin films on (0001) Al2O3 substrates,” Journal of Materials Letters, vol. 62, no. 12-13, pp. 1899–1901, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. A. M. Lima, M. Cremona, M. R. Davolos, C. Legnani, and W. G. Quirino, “Electroluminescence of zinc oxide thin-films prepared via polymeric precursor and via sol-gel methods,” Thin Solid Films, vol. 516, no. 2–4, pp. 165–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Caglar, S. Ilican, M. Caglar, and F. Yakuphanoglu, “Effects of In, Al and Sn dopants on the structural and optical properties of ZnO thin films,” Journal of Spectrochimica Acta—Part A, vol. 67, no. 3-4, pp. 1113–1119, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. B. C. Yadav, R. Srivastava, C. D. Dwivedi, and P. Pramanik, “Synthesis of nano-sized ZnO using drop wise method and its performance as moisture sensor,” Sensors and Actuators, A, vol. 153, no. 2, pp. 137–141, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Gómez and M. de la L. Olvera, “Ga-doped ZnO thin films: effect of deposition temperature, dopant concentration, and vacuum-thermal treatment on the electrical, optical, structural and morphological properties,” Journal of Materials Science and Engineering B, vol. 134, no. 1, pp. 20–26, 2006. View at Publisher · View at Google Scholar
  13. Y. S. Sonawane, K. G. Kanade, B. B. Kale, and R. C. Aiyer, “Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles,” Journal of Materials Research Bulletin, vol. 43, no. 10, pp. 2719–2726, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Srinivasan, R. T. Rajendra Kumar, and J. Kumar, “Influence of Al dopant on microstructure and optical properties of ZnO thin films prepared by sol-gel spin coating method,” Optical Materials, vol. 30, no. 2, pp. 314–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. X. W. Zhu, Y. Q. Li, Y. Lu, L. C. Liu, and Y. B. Xia, “Effects of Li or Li/Mg dopants on the orientation of ZnO nanorods prepared by sol-gel method,” Journal of Materials Chemistry and Physics, vol. 102, no. 1, pp. 75–79, 2007. View at Publisher · View at Google Scholar
  16. A. B. Bodade, A. M. Bende, and G. N. Chaudhari, “Synthesis and characterization of CdO-doped nanocrystalline ZnO:TiO2-based H2S gas sensor,” Journal of Vacuum, vol. 82, no. 6, pp. 588–593, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. H. Jeong, B. N. Park, S. B. Lee, and J. H. Boo, “Metal-doped ZnO thin films: synthesis and characterizations,” Surface and Coatings Technology, vol. 201, no. 9–11, pp. 5318–5322, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Xu, Z. Y. Yuan, G. H. Du, M. Halasa, and B. L. Su, “High-yield synthesis of single-crystalline ZnO hexagonal nanoplates and accounts of their optical and photocatalytic properties,” Journal of Applied Physics A, vol. 86, no. 2, pp. 181–185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. C. Navale and I. S. Mulla, “Photoluminescence and gas sensing study of nanostructured pure and Sn doped ZnO,” Materials Science and Engineering C, vol. 29, no. 4, pp. 1317–1320, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Cao, P. Hu, W. Pan, Y. Huang, and D. Jia, “Methanal and xylene sensors based on ZnO nanoparticles and nanorods prepared by room-temperature solid-state chemical reaction,” Journal of Sensors and Actuators, B, vol. 134, no. 2, pp. 462–466, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. G. Ansari, R. Wahab, Z. A. Ansari et al., “Effect of nanostructure on the urea sensing properties of sol-gel synthesized ZnO,” Journal of Sensors and Actuators, B, vol. 137, no. 2, pp. 566–573, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Yang, Y. Huang, G. Chen, Z. Guo, S. Cheng, and S. Huang, “Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels,” Journal of Sensors and Actuators, B, vol. 140, no. 2, pp. 549–556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Ge, Z. Bai, M. Hu, D. Zeng, S. Cai, and C. Xie, “Preparation and gas-sensing property of ZnO nanorod-bundle thin films,” Journal of Materials Letters, vol. 62, no. 15, pp. 2307–2310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. B. C. Yadav, R. Srivastava, C. D. Dwivedi, and P. Pramanik, “Moisture sensor based on ZnO nanomaterial synthesized through oxalate route,” Journal of Sensors and Actuators, B, vol. 131, no. 1, pp. 216–222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Liul, Z. Jin, W. Li, and J. Qiu, “Preparation of ZnO Porous Thin Films by Sol-Gel Method Using PEG Template,” Journal of Materials Letters, vol. 59, pp. 3620–3625, 2005. View at Google Scholar
  26. M. Takata, D. Tsubone, and H. Yanagida, “Dependence of electrical conductivity of ZnO on degree of sintering,” Journal of the American Ceramic Society, vol. 59, no. 1-2, pp. 4–8, 1976. View at Google Scholar · View at Scopus
  27. C. Ge, C. Xie, and S. Cai, “Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating,” Journal of Materials Science and Engineering B, vol. 137, no. 1–3, pp. 53–58, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. R. Vaezi, , Ph.D. thesis, Sharif University of Technology, 2006.