ISRN Agronomy
Volume 2012 (2012), Article ID 890280, 11 pages
http://dx.doi.org/10.5402/2012/890280
Research Article
Bacterial and Yeast Endophytes from Poplar and Willow Promote Growth in Crop Plants and Grasses
School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA 98195-2100, USA
Received 27 April 2012; Accepted 22 July 2012
Academic Editors: A. D. Arencibia, M. Chodak, E. Perez-Artes, and S. Tsushima
Copyright © 2012 Zareen Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- O. C. Bøckman, “Fertilizers and biological nitrogen fixation as sources of plant nutrients: perspectives for future agriculture,” Plant and Soil, vol. 194, no. 1-2, pp. 11–14, 1997. View at Google Scholar · View at Scopus
- A. V. Sturz and J. Nowak, “Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops,” Applied Soil Ecology, vol. 15, no. 2, pp. 183–190, 2000. View at Publisher · View at Google Scholar · View at Scopus
- J. Hallmann, A. Quadt-Hallmann, W. F. Mahaffee, and J. W. Kloepper, “Bacterial endophytes in agricultural crops,” Canadian Journal of Microbiology, vol. 43, no. 10, pp. 895–914, 1997. View at Google Scholar · View at Scopus
- A. V. Sturz, B. R. Christie, B. G. Matheson, and J. Nowak, “Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth,” Biology and Fertility of Soils, vol. 25, no. 1, pp. 13–19, 1997. View at Publisher · View at Google Scholar · View at Scopus
- M. A. Surette, A. V. Sturz, R. R. Lada, and J. Nowak, “Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth,” Plant and Soil, vol. 253, no. 2, pp. 381–390, 2003. View at Publisher · View at Google Scholar · View at Scopus
- A. H. Sziderics, F. Rasche, F. Trognitz, A. Sessitsch, and E. Wilhelm, “Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.),” Canadian Journal of Microbiology, vol. 53, no. 11, pp. 1195–1202, 2007. View at Publisher · View at Google Scholar · View at Scopus
- M. Beyeler, C. Keel, P. Michaux, and D. Haas, “Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot,” FEMS Microbiology Ecology, vol. 28, no. 3, pp. 225–233, 1999. View at Publisher · View at Google Scholar · View at Scopus
- S. Timmusk, B. Nicander, U. Granhall, and E. Tillberg, “Cytokinin production by Paenibacillus polymyxa,” Soil Biology and Biochemistry, vol. 31, no. 13, pp. 1847–1852, 1999. View at Publisher · View at Google Scholar · View at Scopus
- R. S. Redman, Y. O. Kim, C. J. D. A. Woodward et al., “Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change,” PLoS ONE, vol. 6, no. 7, Article ID e14823, 2011. View at Publisher · View at Google Scholar · View at Scopus
- B. Reiter, H. Bürgmann, K. Burg, and A. Sessitsch, “Endophytic nifH gene diversity in African sweet potato,” Canadian Journal of Microbiology, vol. 49, no. 9, pp. 549–555, 2003. View at Publisher · View at Google Scholar · View at Scopus
- J. K. Vessey, “Plant growth promoting rhizobacteria as biofertilizers,” Plant and Soil, vol. 255, no. 2, pp. 571–586, 2003. View at Publisher · View at Google Scholar · View at Scopus
- S. L. Doty, “Nitrogen-fixing endophytic bacteria for improved plant growth,” in Bacteria in Agrobiology: Plant Growth Responses, D. K. Maheshwari, Ed., chapter 9, pp. 183–199, Springer, New York, NY, USA, 2011. View at Google Scholar
- M. Flores-Encarnación, M. Contreras-Zentella, L. Soto-Urzua, G. R. Aguilar, B. E. Baca, and J. E. Escamilla, “The respiratory system and diazotrophic activity of Acetobacter diazotrophicus PAL5,” Journal of Bacteriology, vol. 181, no. 22, pp. 6987–6995, 1999. View at Google Scholar · View at Scopus
- J. R. Gallon, “Reconciling the incompatible- N2 fixation and O2,” New Phytologist, vol. 122, no. 4, pp. 571–609, 1992. View at Google Scholar
- M. Sevilla, R. H. Burris, N. Gunapala, and C. Kennedy, “Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with acetobacter diazotrophicus wild-type and Nif- mutant strains,” Molecular Plant-Microbe Interactions, vol. 14, no. 3, pp. 358–366, 2001. View at Google Scholar · View at Scopus
- A. Elbeltagy, K. Nishioka, T. Sato et al., “Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. Isolated from wild rice species,” Applied and Environmental Microbiology, vol. 67, no. 3–12, pp. 5285–5293, 2001. View at Google Scholar · View at Scopus
- V. L. D. Baldani and J. Döbereiner, “Host-plant specificity in the infection of cereals with Azospirillum spp,” Soil Biology and Biochemistry, vol. 12, no. 4, pp. 433–439, 1980. View at Google Scholar · View at Scopus
- S. Urquiaga, K. H. S. Cruz, and R. M. Boddey, “Contribution of nitrogen fixation to sugar cane. Nitrogen-15 and nitrogen-balance estimates,” Soil Science Society of America Journal, vol. 56, no. 1, pp. 105–114, 1992. View at Google Scholar · View at Scopus
- J. R. Stoltzfus, R. So, P. P. Malarvithi, J. K. Ladha, and F. J. De Bruijn, “Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen,” Plant and Soil, vol. 194, no. 1-2, pp. 25–36, 1997. View at Google Scholar · View at Scopus
- Y. Dong, A. L. Iniguez, and E. W. Triplett, “Quantitative assessments of the host range and strain specificity of endophytic colonization by Klebsiella pneumoniae 342,” Plant and Soil, vol. 257, no. 1, pp. 49–59, 2003. View at Publisher · View at Google Scholar · View at Scopus
- E. Martinez-Romero, T. Jimenez-Salgado, L. E. Fuentes-Ramirez, A. Tapia-Hernandez, M. A. Mascarua-Esparza, and J. Caballero-Mellado, “Coffea Arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria,” Applied and Environmental Microbiology, vol. 63, no. 9, pp. 3676–3683, 1997. View at Google Scholar · View at Scopus
- S. Gagne, C. Richard, H. Rousseau, and H. Antoun, “Xylem-residing bacteria in alfalfa roots,” Canadian Journal of Microbiology, vol. 33, no. 11, pp. 996–1000, 1987. View at Publisher · View at Google Scholar
- D. Y. Kobayashi and D. J. Palumbo, “Bacterial endophytes and their effects on plants and uses in agriculture,” in Microbial Endophytes, C. W. Bacon and J. F. White, Eds., pp. 199–233, Springer, New York, NY, USA, 2000. View at Google Scholar
- Z. Khan and S. L. Doty, “Characterization of bacterial endophytes of sweet potato plants,” Plant and Soil, pp. 1–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
- F. Rasche, R. Trondl, C. Naglreiter, T. G. Reichenauer, and A. Sessitsch, “Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum anuum L.),” Canadian Journal of Microbiology, vol. 52, no. 11, pp. 1036–1045, 2006. View at Publisher · View at Google Scholar · View at Scopus
- P. Nejad and P. A. Johnson, “Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato,” Biological Control, vol. 18, no. 3, pp. 208–215, 2000. View at Publisher · View at Google Scholar · View at Scopus
- G.V.M. De Pereira, K.T. Magalhaes, E.R. Lorenzetii, T.P. Souza, and R.F. Schwan, “A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion,” Microbial Ecology, vol. 63, no. 2, pp. 405–417, 2012. View at Publisher · View at Google Scholar
- S. L. Doty, “Growth-promoting endophytic fungi of forest trees,” in Endophytes of Forest Trees: Biology and Applications, A. M. Pirttila and A. C. Carolin, Eds., Springer, New York, NY, USA, 2011. View at Google Scholar
- S. L. Doty, B. Oakley, G. Xin et al., “Diazotrophic endophytes of native black cottonwood and willow,” Symbiosis, vol. 47, no. 1, pp. 23–33, 2009. View at Google Scholar · View at Scopus
- G. Xin, G. Zhang, J. W. Kang, J. T. Staley, and S. L. Doty, “A diazotrophic, indole-3-acetic acid-producing endophyte from wild cottonwood,” Biology and Fertility of Soils, vol. 45, no. 6, pp. 669–674, 2009. View at Publisher · View at Google Scholar · View at Scopus
- J. Knoth, S. H. Kim, G. Ettl, Doty, and S. L, “Effects of cross host species inoculation of nitrogen-fixing endophytes on growth and leaf physiology of maize,” GCB Bioenergy. In press. View at Publisher · View at Google Scholar
- R. J. Rennie, “A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils,” Canadian Journal of Microbiology, vol. 27, no. 1, pp. 8–14, 1981. View at Google Scholar · View at Scopus
- M. D. Chilton, T. C. Currier, and S. K. Farrand, “Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 71, no. 9, pp. 3672–3676, 1974. View at Google Scholar · View at Scopus
- H. H. Long, D. D. Schmidt, and I. T. Baldwin, “Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses,” PLoS ONE, vol. 3, no. 7, Article ID e2702, 2008. View at Publisher · View at Google Scholar · View at Scopus
- S. Mehnaz and G. Lazarovits, “Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions,” Microbial Ecology, vol. 51, no. 3, pp. 326–335, 2006. View at Publisher · View at Google Scholar · View at Scopus
- D. K. Zinniel, P. Lambrecht, N. B. Harris et al., “Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants,” Applied and Environmental Microbiology, vol. 68, no. 5, pp. 2198–2208, 2002. View at Publisher · View at Google Scholar · View at Scopus