Table of Contents
ISRN Metallurgy
Volume 2012 (2012), Article ID 892385, 15 pages
http://dx.doi.org/10.5402/2012/892385
Research Article

Sweet Corrosion Inhibition on API 5L-B Pipeline Steel

1Department of Metallurgical and Material Engineering, Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez, Egypt
2Department of Physical Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
3Department of Integrity Management, United Gas Derivatives Company (UGDC), Port Said, Egypt

Received 20 September 2012; Accepted 11 October 2012

Academic Editors: M. Carboneras and Y. S. Chang

Copyright © 2012 Mahmoud Abbas Ibraheem et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. C. Okafor, X. Liu, and Y. G. Zheng, “Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution,” Corrosion Science, vol. 51, no. 4, pp. 761–768, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Heydari and M. Javidi, “Corrosion inhibition and adsorption behaviour of an amido-imidazoline derivative on API 5L X52 steel in CO2-saturated solution and synergistic effect of iodide ions,” Corrosion Science, vol. 61, pp. 148–155, 2012. View at Google Scholar
  3. X. Liu, P. C. Okafor, and Y. G. Zheng, “The inhibition of CO2 corrosion of N80 mild steel in single liquid phase and liquid/particle two-phase flow by aminoethyl imidazoline derivatives,” Corrosion Science, vol. 51, no. 4, pp. 744–751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. B. D. Mert, M. Erman Mert, G. Kardaş, and B. Yazıc, “Experimental and theoretical investigation of 3-amino-1, 2, 4-triazole-5-thiol as a corrosion inhibitor for carbon steel in HCl medium,” Corrosion Science, vol. 53, no. 12, pp. 4265–4272, 2011. View at Google Scholar
  5. B. S. Sanatkumar, J. Nayak, and A. N. Shetty, “Influence of 2-(4-chlorophenyl)-2-oxoethyl benzoate on the hydrogen evolution and corrosion inhibition of 18 Ni 250 grade weld aged maraging steel in 1.0 M sulfuric acid medium,” International Journal of Hydrogen Energy, vol. 37, pp. 9431–9442, 2012. View at Google Scholar
  6. W. H. Li, Q. He, S. T. Zhang, C. L. Pei, and B. R. Hou, “Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium,” Journal of Applied Electrochemistry, vol. 38, no. 3, pp. 289–295, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. John, K. M. Ali, and A. Joseph, “Electrochemical, surface analytical and quantum chemical studies on Schiff bases of 4-amino-4H-1,2,4-triazole-3,5-dimethanol (ATD) in corrosion protection of aluminium in 1N HNO3,” Journal of Materials Science, vol. 34, no. 6, pp. 1245–1256, 2011. View at Google Scholar
  8. S. John, J. Joy, M. Prajila, and A. Joseph, “Electrochemical, quantum chemical, and molecular dynamics studies on the interaction of 4-amino-4H,3,5-di(methoxy)-1,2,4-triazole (ATD), BATD, and DBATD on copper metal in 1N H2SO4,” Materials and Corrosion, vol. 62, no. 11, 2011. View at Google Scholar
  9. F. A. Ansari and M. A. Quraishi, “Inhibitive effect of some gemini surfactants as corrosion inhibitors for mild steel in acetic acid media,” Arabian Journal for Science and Engineering, vol. 36, no. 1, pp. 11–20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Bentiss, M. Traisnel, and M. Lagrenee, “The substituted 1,3,4-oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media,” Corrosion Science, vol. 42, no. 1, pp. 127–146, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Muralidharan, K. L. N. Phani, S. Pitchumani, S. Ravichandran, and S. V. K. Iyer, “Polyamino-benzoquinone polymers: a new class of corrosion inhibitors for mild steel,” Journal of the Electrochemical Society, vol. 142, no. 5, pp. 1478–1483, 1995. View at Google Scholar · View at Scopus
  12. M. G. Hosseini, M. Ehteshamzadeh, and T. Shahrabi, “Protection of mild steel corrosion with Schiff bases in 0.5 M H2SO4 solution,” Electrochimica Acta, vol. 52, no. 11, pp. 3680–3685, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Wang, X. Wang, H. Wang, L. Wang, and A. Liu, “DFT study of new bipyrazole derivatives and their potential activity as corrosion inhibitors,” Journal of Molecular Modeling, vol. 13, no. 1, pp. 147–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Gamry Echem Analyst Manual, 2003.
  15. R. W. Bosch, “Electrochemical frequency modulation: a new electrochemical technique for online corrosion monitoring,” Corrosion, vol. 57, no. 1, pp. 60–70, 2001. View at Google Scholar · View at Scopus
  16. Y. M. Tang, Y. Chen, W. Z. Yang, Y. Liu, X. S. Yin, and J. T. Wang, “Electrochemical and theoretical studies of thienyl-substituted amino triazoles on corrosion inhibition of copper in 0.5 M H2SO4,” Journal of Applied Electrochemistry, vol. 38, no. 11, pp. 1553–1559, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Migahed, “Electrochemical investigation of the corrosion behaviour of mild steel in 2 M HCl solution in presence of 1-dodecyl-4-methoxy pyridinium bromide,” Materials Chemistry and Physics, vol. 93, no. 1, pp. 48–53, 2005. View at Publisher · View at Google Scholar
  18. A. S. Fouda, G. Y. Elewady, and M. N. El-Haddad, “Corrosion inhibition of carbon steel in acidic solution using some azodyes,” Canadian Journal on Scientific and Industrial Research, vol. 2, no. 1, 2011. View at Google Scholar
  19. H. Amar, A. Tounsi, A. Makayssi, A. Derja, J. Benzakour, and A. Outzourhit, “Corrosion inhibition of Armco iron by 2-mercaptobenzimidazole in sodium chloride 3% media,” Corrosion Science, vol. 49, no. 7, pp. 2936–2945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Avci, “Corrosion inhibition of indole-3-acetic acid on mild steel in 0.5 M HCl,” Colloids and Surfaces A, vol. 317, no. 1-3, pp. 730–736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Abdallah, “Rhodanine azosulpha drugs as corrosion inhibitors for corrosion of 304 stainless steel in hydrochloric acid solution,” Corrosion Science, vol. 44, no. 4, pp. 717–728, 2002. View at Publisher · View at Google Scholar
  22. M. Lebrini, M. Lagrenée, M. Traisnel, L. Gengembre, H. Vezin, and F. Bentiss, “Enhanced corrosion resistance of mild steel in normal sulfuric acid medium by 2,5-bis(n-thienyl)-1,3,4-thiadiazoles: electrochemical, X-ray photoelectron spectroscopy and theoretical studies,” Applied Surface Science, vol. 253, no. 23, pp. 9267–9276, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Moretti, F. Guidi, and G. Grion, “Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid,” Corrosion Science, vol. 46, no. 2, pp. 387–403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. F. M. Donahue and K. Nobe, “Theory of organic corrosion inhibitors adsorption and linear free energy relationships,” Journal of The Electrochemical Society, vol. 112, no. 9, pp. 886–891, 1965. View at Publisher · View at Google Scholar
  25. E. Kamis, F. Belluci, R. M. Latanision, and E. S. H. El-Ashry, “Acid corrosion inhibition of nickel by 2-(triphenosphoranylidene) succinic anhydride,” Corrosion, vol. 47, no. 9, pp. 677–686, 1991. View at Publisher · View at Google Scholar
  26. O. Benali, L. Larabi, M. Traisnel, L. Gengembre, and Y. Harek, “Electrochemical, theoretical and XPS studies of 2-mercapto-1-methylimidazole adsorption on carbon steel in 1 M HClO4,” Applied Surface Science, vol. 253, no. 14, pp. 6130–6139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Solmaz, G. Kardaş, M. Çulha, B. Yazici, and M. Erbil, “Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media,” Electrochimica Acta, vol. 53, no. 20, pp. 5941–5952, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Aljourani, K. Raeissi, and M. A. Golozar, “Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1 M HCl solution,” Corrosion Science, vol. 51, no. 8, pp. 1836–1843, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Bentiss, M. Lebrini, and M. Lagrenée, “Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/ hydrochloric acid system,” Corrosion Science, vol. 47, no. 12, pp. 2915–2931, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Y. Musa, A. B. Mohamad, A. A. H. Kadhum, M. S. Takriff, and L. T. Tien, “Synergistic effect of potassium iodide with phthalazone on the corrosion inhibition of mild steel in 1.0 M HCl,” Corrosion Science, vol. 53, no. 11, pp. 3672–3677, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Ghareba and S. Omanovic, “The effect of electrolyte flow on the performance of 12-aminododecanoic acid as a carbon steel corrosion inhibitor in CO2-saturated hydrochloric acid,” Corrosion Science, vol. 53, no. 11, pp. 3805–3812, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. E. A. Noor and A. H. Al-Moubaraki, “Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4[4′(-X)-styryl pyridinium iodides/hydrochloric acid systems,” Materials Chemistry and Physics, vol. 110, no. 1, pp. 145–154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Larabi, Y. Harek, O. Benali, and S. Ghalem, “Hydrazide derivatives as corrosion inhibitors for mild steel in 1 M HCl,” Progress in Organic Coatings, vol. 54, no. 3, pp. 256–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. P. Khodyrev, E. S. Batyeva, E. K. Badeeva, E. V. Platova, L. Tiwari, and O. G. Sinyashin, “The inhibition action of ammonium salts of O,O-dialkyldithiophosphoric acid on carbon dioxide corrosion of mild steel,” Corrosion Science, vol. 53, no. 3, pp. 976–983, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. K. K. Al-Neami, A. K. Mohamed, I. M. Kenawy, and A. S. Fouda, “Inhibition of the corrosion of iron by oxygen and nitrogen containing compounds,” Monatshefte für Chemie Chemical Monthly, vol. 126, no. 4, pp. 369–376, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. A. Elewady, A. S. Fouda, and H. K. Zeid, “Corrosion behavior of some petroleum equipment in acidic media,” Physical Chemistry, Mansoura University. In press.
  37. G. E. Badr, “The role of some thiosemicarbazide derivatives as corrosion inhibitors for C-steel in acidic media,” Corrosion Science, vol. 51, no. 11, pp. 2529–2536, 2009. View at Publisher · View at Google Scholar
  38. S. S. A. Rehim, O. A. Hazzazi, M. A. Amin, and K. F. Khaled, “On the corrosion inhibition of low carbon steel in concentrated sulphuric acid solutions—part I: chemical and electrochemical (AC and DC) studies,” Corrosion Science, vol. 50, no. 8, pp. 2258–2271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Fragoza-Mar, O. Olivares-Xometl, M. A. Domnguez-Aguilar, E. A. Flores, P. Arellanes-Lozada, and F. Jiménez-Cruz, “Corrosion inhibitor activity of 1, 3-diketone malonates for mild steel in aqueous hydrochloric acid solution,” Corrosion Science, vol. 61, pp. 171–184, 2012. View at Google Scholar
  40. P. S. Prevéy, “X-ray diffraction characterization of crystallinity and phase composition in plasma-sprayed hydroxyapatite coatings,” Journal of Thermal Spray Technology, vol. 9, no. 3, pp. 369–376, 2000. View at Google Scholar · View at Scopus
  41. I. Bertóti, “Characterization of nitride coatings by XPS,” Surface and Coatings Technology, vol. 151-152, pp. 194–203, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Baranowska and S. E. Franklin, “Characterization of gas-nitrided austenitic steel with an amorphous/nanocrystalline top layer,” Wear, vol. 264, no. 9-10, pp. 899–903, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. G. N. Mu, T. P. Zhao, M. Liu, and T. Gu, “Effect of metallic cations on corrosion inhibition of an anionic surfactant for mild steel,” Corrosion, vol. 52, no. 11, pp. 853–856, 1996. View at Google Scholar · View at Scopus
  44. A. K. Singh and M. A. Quraishi, “Inhibitive effect of diethylcarbamazine on the corrosion of mild steel in hydrochloric acid,” Corrosion Science, vol. 52, no. 4, pp. 1529–1535, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Popova, M. Christov, S. Raicheva, and E. Sokolova, “Adsorption and inhibitive properties of benzimidazole derivatives in acid mild steel corrosion,” Corrosion Science, vol. 46, no. 6, pp. 1333–1350, 2004. View at Publisher · View at Google Scholar · View at Scopus