Table of Contents
ISRN Oncology
Volume 2012, Article ID 909453, 8 pages
http://dx.doi.org/10.5402/2012/909453
Research Article

Comparison of Gene Expression Profiling in Sarcomas and Mesenchymal Stem Cells Identifies Tumorigenic Pathways in Chemically Induced Rat Sarcoma Model

1Department of Orthopedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
2Department of Life Science, Faculty of Science and Technology, Kinki University, Higashiosaka 577-8502, Japan
3RI Center, Nara Medical University, Kashihara 634-8521, Japan

Received 24 February 2012; Accepted 20 May 2012

Academic Editors: A. Celetti, F. Kuhnel, and S. Patel

Copyright © 2012 Kanya Honoki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. D. M. Fletcher, K. K. Unni, F. Mertens et al., “Conventional osteosarcoma,” in World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone, IARC Press, Lyon, France, 2002. View at Google Scholar
  2. A. K. Raymond, A. G. Ayala, and S. Knuutila, “Conventional osteosarcoma,” in World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone, C. D. M. Fletcher, K. K. Unni, and F. Mertens, Eds., pp. 264–270, IARC Press, Lyon, France, 2002. View at Google Scholar
  3. C. D. M. Fletcher, “The evolving classification of soft tissue tumours: an update based on the new WHO classification,” Histopathology, vol. 48, no. 1, pp. 3–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Nakayama, T. Nemoto, H. Takahashi et al., “Gene expression analysis of soft tissue sarcomas: characterization and reclassification of malignant fibrous histiocytoma,” Modern Pathology, vol. 20, no. 7, pp. 749–759, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Judson, “State-of-the-art approach in selective curable tumours: soft tissue sarcoma,” Annals of Oncology, vol. 19, no. 7, pp. vii166–vii169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Matushansky, E. Hernando, N. D. Socci et al., “Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway,” Journal of Clinical Investigation, vol. 117, no. 11, pp. 3248–3257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Tasso, A. Augello, M. Carida' et al., “Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds,” Carcinogenesis, vol. 30, no. 1, pp. 150–157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Gazziola, N. Cordani, B. Wasserman, S. Carta, A. Colombatti, and R. Perris, “Malignant fibrous histiocytoma: a proposed cellular origin and identification of its characterizing gene transcripts.,” International Journal of Oncology, vol. 23, no. 2, pp. 343–351, 2003. View at Google Scholar · View at Scopus
  9. K. Honoki, M. Tsutsumi, Y. Miyauchi et al., “Increased expression of nucleoside diphosphate kinase/nm23 and c-Ha-ras mRNA is associated with spontaneous lung metastasis in rat-transplantable osteosarcomas,” Cancer Research, vol. 53, no. 20, pp. 5038–5042, 1993. View at Google Scholar · View at Scopus
  10. K. Honoki, T. Mori, M. Tsutsumi et al., “Heterogeneous pattern of gene expression in cloned cell lines established from a rat transplantable osteosarcoma lung metastatic nodule,” Cancer Letters, vol. 127, no. 1-2, pp. 221–228, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Tohma, H. Ohgushi, T. Morishita et al., “Bone marrow-derived mesenchymal cells can rescue osteogenic capacity of devitalized autologous bone,” Journal of Tissue Engineering and Regenerative Medicine, vol. 2, no. 1, pp. 61–68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Calo, J. A. Quintero-Estades, P. S. Danielian, S. Nedelcu, S. D. Berman, and J. A. Lees, “Rb regulates fate choice and lineage commitment in vivo,” Nature, vol. 466, no. 7310, pp. 1110–1114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Tolar, A. J. Nauta, M. J. Osborn et al., “Sarcoma derived from cultured mesenchymal stem cells,” Stem Cells, vol. 25, no. 2, pp. 371–379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. B. Mohseny, K. Szuhai, S. Romeo et al., “Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2,” Journal of Pathology, vol. 219, no. 3, pp. 294–305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Riggi, L. Cironi, P. Provero et al., “Development of Ewing's sarcoma from primary bone marrow-derived mesenchymal progenitor cells,” Cancer Research, vol. 65, no. 24, pp. 11459–11468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Rubio, J. García-Castro, I. Gutiérrez-Aranda et al., “Deficiency in p53 but not retinoblastoma induces the transformation of mesenchymal stem cells in vitro and initiates leiomyosarcoma in vivo,” Cancer Research, vol. 70, no. 10, pp. 4185–4194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Matushansky, E. Hernando, N. D. Socci et al., “Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway,” Journal of Clinical Investigation, vol. 117, no. 11, pp. 3248–3257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. Li, H. Hisha, T. Takaki et al., “Transformation potential of bone marrow stromal cells into undifferentiated high-grade pleomorphic sarcoma,” Journal of Cancer Research and Clinical Oncology, vol. 136, no. 6, pp. 829–838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Klaus and W. Birchmeier, “Wnt signalling and its impact on development and cancer,” Nature Reviews Cancer, vol. 8, no. 5, pp. 387–398, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Hu, M. J. Hilton, X. Tu, K. Yu, D. M. Ornitz, and F. Long, “Sequential roles of Hedgehog and Wnt signaling in osteoblast development,” Development, vol. 132, no. 1, pp. 49–60, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. S. J. Rodda and A. P. McMahon, “Distinct roles for Hedgehog and caronical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors,” Development, vol. 133, no. 16, pp. 3231–3244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. Mikels and R. Nusse, “Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context.,” PLoS Biology, vol. 4, no. 4, p. e115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Katoh and M. Katoh, “WNT signaling pathway and stem cell signaling network,” Clinical Cancer Research, vol. 13, no. 14, pp. 4042–4045, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. C. A. Gregory, H. Singh, A. S. Perry, and D. J. Prockop, “The Wnt signaling inhibitor Dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow,” Journal of Biological Chemistry, vol. 278, no. 30, pp. 28067–28078, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Cai, A. B. Mohseny, M. Karperien, P. C. W. Hogendoorn, G. Zhou, and A. M. Cleton-Jansen, “Inactive Wnt/β-catenin pathway in conventional high-grade osteosarcoma,” Journal of Pathology, vol. 220, no. 1, pp. 24–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Vijayakumar, G. Liu, I. A. Rus et al., “High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/β-catenin target gene, CDC25A,” Cancer Cell, vol. 19, no. 5, pp. 601–612, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. P. McQueen, S. Ghaffar, Y. Guo, E. M. Rubin, X. Zi, and B. H. Hoang, “The Wnt signaling pathway: implications for therapy in osteosarcoma,” Expert Review of Anticancer Therapy, vol. 11, pp. 1223–1232, 2011. View at Google Scholar
  28. Z. A. Khatib, H. Matsushime, M. Valentine, D. N. Shapiro, C. J. Sherr, and A. T. Look, “Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas,” Cancer Research, vol. 53, no. 22, pp. 5535–5541, 1993. View at Google Scholar · View at Scopus
  29. G. Wei, F. Lonardo, T. Ueda et al., “CDK4 gene amplification in osteosarcoma: reciprocal relationship with INK4A gene alterations and mapping 12q13 amplicons,” International Journal of Cancer, vol. 80, pp. 199–204, 1999. View at Google Scholar
  30. H. Nagao, K. Ijiri, M. Hirotsu et al., “Role of GLI2 in the growth of human osteosarcoma,” Journal of Pathology, vol. 224, no. 2, pp. 169–179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Lee, R. Kawagoe, K. Sasai et al., “Loss of suppressor-of-fused function promotes tumorigenesis,” Oncogene, vol. 26, no. 44, pp. 6442–6447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. E. H. Epstein, “Basal cell carcinomas: attack of the hedgehog,” Nature Reviews Cancer, vol. 8, no. 10, pp. 743–754, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Abe, E. Oda-Sato, K. Tobiume et al., “Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 12, pp. 4838–4843, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Ohta, K. Tateishi, F. Kanai et al., “p53-independent negative regulation of p21/cyclin-dependent kinase-interacting protein 1 by the Sonic Hedgehog-glioma-associated oncogene 1 pathway in gastric carcinoma cells,” Cancer Research, vol. 65, no. 23, pp. 10822–10829, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. C. P. Gibbs, V. G. Kukekov, J. D. Reith et al., “Stem-like cells in bone sarcomas: implications for tumorigenesis,” Neoplasia, vol. 7, no. 11, pp. 967–976, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Tirino, V. Desiderio, R. d'Aquino et al., “Detection and characterization of CD133+ cancer stem cells in human solid tumours,” PLoS ONE, vol. 3, no. 10, Article ID e3469, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Di Fiore, A. Santulli, R. D. Ferrante et al., “Identification and expansion of human osteosarcoma-cancer-stem cells by long-term 3-aminobenzamide treatment,” Journal of Cellular Physiology, vol. 219, no. 2, pp. 301–313, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. E. Aubin, F. Lui, L. Malaval, and A. K. Gupta, “Osteoblast and chondroblast differentiation,” Bone, vol. 17, 2, pp. 77S–83S, 1995. View at Publisher · View at Google Scholar · View at Scopus