Table of Contents
ISRN Nanotechnology
Volume 2012, Article ID 914636, 5 pages
http://dx.doi.org/10.5402/2012/914636
Research Article

Assessment of Toxicity of Cdse/Cds/Zns/S,S-Dihydrolipoic Acid/Polyacrylic Acid Quantum Dots at Danio rerio Embryos and Larvae

1Institute of Biomedical Chemistry, Russian Academy of Medical Sciences (IBMC RAMS), 10 Pogodinskaya Street, Moscow 119121, Russia
2EcoBioPharm LLC., 11-1 Bolshoy Kozlovsky Lane, Moscow 107078, Russia

Received 10 April 2012; Accepted 29 May 2012

Academic Editors: Y. Jin and B. R. Kimball

Copyright © 2012 Konstantin V. Zolotarev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nature Biotechnology, vol. 22, no. 8, pp. 969–976, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Sengupta and R. Sasisekharan, “Exploiting nanotechnology to target cancer,” British Journal of Cancer, vol. 96, no. 9, pp. 1315–1319, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Wu, H. Liu, J. Liu et al., “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nature Biotechnology, vol. 21, no. 1, pp. 41–46, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, “Selection of quantum dot wavelengths for biomedical assays and imaging,” Molecular Imaging, vol. 2, no. 1, pp. 50–64, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Sukardi, H. T. Chng, E. C. Y. Chan, Z. Gong, and S. H. Lam, “Zebrafish for drug toxicity screening: bridging the in vitro cell-based models and in vivo mammalian models,” Expert Opinion on Drug Metabolism and Toxicology, vol. 7, no. 5, pp. 579–589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. N. F. Belyaeva, V. N. Kashirtseva, N. V. Medvedeva, Y. Y. Khudoklinova, O. M. Ipatova, and A. I. Archakov, “Zebrafish as a model system for biomedical studies,” Biochemistry B, vol. 3, no. 4, pp. 343–350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. U. Strähle and C. Grabher, “The zebrafish embryo as a model for assessing off-target drug effects,” DMM Disease Models and Mechanisms, vol. 3, no. 11-12, pp. 689–692, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. ISO, International Organization for Standardization, “Water quality—Determination of the acute lethal toxicity of substances to a freshwater fish [Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae)],” ISO, 7346-3: Flow-through method, 1986.
  9. OECD, Guideline for the testing of chemicals. Draft proposal for a new guideline. Fish Embryo Toxicity (FET) Test, 2006.
  10. D. M. Rawson, T. Zhang, D. Kalicharan, and W. L. Jongebloed, “Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachydanio rerio: a consideration of the structural and functional relationships with respect to cryoprotectant penetration,” Aquaculture Research, vol. 31, no. 3, pp. 325–336, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. T. C. King-Heiden, P. N. Wiecinski, A. N. Mangham et al., “Quantum dot nanotoxicity assessment using the zebrafish embryo,” Environmental Science and Technology, vol. 43, no. 5, pp. 1605–1611, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Almeida, Y. S. Diniz, S. F. G. Marques et al., “The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination,” Environment International, vol. 27, no. 8, pp. 673–679, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Meinelt, R. C. Playle, M. Pietrock, B. K. Burnison, A. Wienke, and C. E. W. Steinberg, “Interaction of cadmium toxicity in embryos and larvae of zebrafish (Danio rerio) with calcium and humic substances,” Aquatic Toxicology, vol. 54, no. 3-4, pp. 205–215, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. S. George, T. Xia, R. Rallo et al., “Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials,” ACS Nano, vol. 5, no. 3, pp. 1805–1817, 2011. View at Publisher · View at Google Scholar · View at Scopus