Table of Contents
ISRN Civil Engineering
Volume 2012 (2012), Article ID 926412, 10 pages
http://dx.doi.org/10.5402/2012/926412
Research Article

Performance Updating of Concrete Structures Using Proactive Health Monitoring: A Systems Approach

Department of Civil Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK

Received 27 July 2012; Accepted 8 October 2012

Academic Editors: M. Maslehuddin and G. Ranzi

Copyright © 2012 M. Imran Rafiq. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Mahut and R. J. Woodward, “Comparison of bridge management practice in England and France,” in Bridge Management, G. A. R. Parke and P. Disney, Eds., vol. 5, pp. 163–170, Thomas Telford, London, UK, 2005. View at Google Scholar
  2. B. Allison and R. J. Woodward, “Inspection, testing, and monitoring of trunk road bridges in England,” in Bridge Management, G. A. R. Parke and P. Disney, Eds., vol. 5, pp. 171–178, Thomas Telford, London, UK, 2005. View at Google Scholar
  3. Highways Agency, “Strategic Roads 2010: highways agency 10 years national road strategy,” Highways Agency, London, UK, 2005, http://www.highways.gov.uk/.
  4. A. F. Daly and G. R. A. Watts, “High-Tech remote monitoring for the management of highway structures,” Project Report PPR197, TRL Limited, 2006. View at Google Scholar
  5. N. R. Buenfeld, R. D. Davies, A. Karami, and A. L. Gilbertson, Eds., “Intelligent monitoring of concrete structures,” Tech. Rep. C661, CIRIA, London, UK, 2008. View at Google Scholar
  6. M. I. Rafiq, M. K. Chryssanthopoulos, and T. Onoufriou, “Performance updating of concrete bridges using proactive health monitoring methods,” Reliability Engineering and System Safety, vol. 86, no. 3, pp. 247–256, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. C. M. Gaal, C. V. D. Veen, and M. H. Djorai, “Deterioration of concrete bridge in the Netherlands,” in Structural Faults and Repairs, M. C. Forde, Ed., Engineering Technics Press, Edinburgh, UK, 2001. View at Google Scholar
  8. M. Collipardi, A. Marcialis, and R. Turriziani, “The kinetics of penetration of chloride ions in concrete,” II Cemento, vol. 4, pp. 157–164, 1970. View at Google Scholar
  9. M. Cesare, J. Santamarina, C. Turkstra, and E. Vanmarcke, “Modelling bridge deterioration with Markov Chains,” Journal of Transportation Engineering, vol. 118, no. 6, pp. 820–833, 1992. View at Google Scholar
  10. M. F. Elkordy, K. C. Chang, and G. C. Lee, “Neural networks trained by analytically simulated damage states,” Journal of Computing in Civil Engineering, vol. 7, no. 2, pp. 130–145, 1993. View at Google Scholar · View at Scopus
  11. D. M. Frangopol, K.-Y. Lin, and A. C. Estes, “Reliability of reinforced concrete girders under corrosion attack,” Journal of Structural Engineering, vol. 123, no. 3, pp. 286–297, 1997. View at Google Scholar · View at Scopus
  12. S. Chatterji, “Transportation of ions through cement based materials. Part 1 fundamental equations and basic measurement techniques,” Cement and Concrete Research, vol. 24, no. 5, pp. 907–912, 1994. View at Google Scholar · View at Scopus
  13. C. Q. Li, “Initiation of chloride-induced reinforcement corrosion in concrete structural members—prediction,” ACI Structural Journal, vol. 99, no. 2, pp. 133–141, 2002. View at Google Scholar · View at Scopus
  14. C. Q. Li, J. J. Zheng, and L. Shao, “New solution for prediction of chloride ingress in reinforced concrete flexural members,” ACI Materials Journal, vol. 100, no. 4, pp. 319–325, 2003. View at Google Scholar · View at Scopus
  15. HETEK, “Chloride penetration into concrete,” State of the Art report no. 53, The Danish Road Directorate, 1996. View at Google Scholar
  16. Duracrete, Modelling of Degradation. Duracrete, Probabilistic Performance Based Durability Design of Concrete Structures, European Union-Brite EuRam III, 1998.
  17. M. G. Stewart and D. V. Rosowsky, “Time-dependent reliability of deteriorating reinforced concrete bridge decks,” Structural Safety, vol. 20, no. 1, pp. 91–109, 1998. View at Google Scholar · View at Scopus
  18. M. G. Stewart, M. H. Faber, and C. Gehlen, “Temporal and spatial aspects of probabilistic corrosion models,” in Proceedings of the 3rd International IABMAS Workshop on Life-cYcle Cost Analysis And Design of Civil Infrastructure Systems and The JCSS Workshop on Probabilistic Modelling of Deterioration Processes in Concrete Structures, vol. 2003, pp. 269–278, Lausanne, Switzerland, 2004.
  19. P. Thoft-Christensen, F. M. Jensen, C. R. Middleton, and A. Blackmore, “Assessment of the reliability of concrete slab bridges,” in Proceedings 7th IFIP WG 7.5 Working Conference, Reliability and Optimization of Structural Systems, D. M. Frangopol, R. B. Corotis, and R. Rackwitz, Eds., pp. 323–328, 1996.
  20. K. Tuutti, “Corrosion of steel in concrete,” CBI Research Report 4-82, Swedish Cement and Concrete Research Institute, 1982. View at Google Scholar
  21. P. Schieβl and M. Raupach, “Non-destructive permanent monitoring of the corrosion risk of steel in concrete,” in Non-Destructive Testing in Civil Engineering, vol. 2, pp. 661–674, British Institute of Non-Destructive Testing, Northampton, UK, 1993. View at Google Scholar
  22. M. Raupach, “Smart Structures: development of sensors to monitor the corrosion risk for the reinforcement of concrete bridges,” in Proceedings of the International Conference on Bridge Maintenance, Safety and Management (IABMAS '02), J. R. Casas, D. M. Frangopol, and A. S. Nowak, Eds., CIMNE, Barcelona, Spain, 2002.
  23. H. O. Madsen, “Model updating in reliability analysis, Proc,” in Proceedings of the 5th International Conference on Applications of Statistics and Probability to Soil and Structural Engineering, pp. 564–577, Vancouver, Canada, 1987.
  24. H. O. Madsen and J. D. Sorensen, “Probability-based optimization of fatigue design, inspection and maintenance,” in Proceedings of the Integrity of Offshore Structures, Glasgow, UK, 1990.
  25. R. Zheng and B. R. Ellingwood, “Role of non-destructive evaluation in time-dependent reliability analysis,” Structural Safety, vol. 20, no. 4, pp. 325–339, 1998. View at Google Scholar · View at Scopus
  26. T. Onoufriou, “Reliability based inspection planning of offshore structures,” Marine Structures, vol. 12, no. 7-8, pp. 521–539, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. T. D. Righiniotis, “Influence of management actions on fatigue reliability of a welded joint,” International Journal of Fatigue, vol. 26, no. 3, pp. 231–239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. M. H. Faber and J. D. Sorensen, “Indicators for inspection and maintenance planning of concrete structures,” Structural Safety, vol. 24, no. 2-4, pp. 377–396, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. M. I. Rafiq, M. Chryssanthopoulos, and T. Onoufriou, “Sensitivity of uncertainty in performance prediction of deteriorating concrete structures,” Structure and Infrastructure Engineering, vol. 2, no. 2, pp. 117–130, 2006. View at Google Scholar
  30. K. A. T. Vu and M. G. Stewart, “Structural reliability of concrete bridges including improved chloride-induced corrosion models,” Structural Safety, vol. 22, no. 4, pp. 313–333, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Lentz, M. H. Faber, and T. Jonsen, “Halfcell potential measurements for condition assessment,” in Proceedings of the International Conference on Bridge Maintenance, Safety and Management (IABMAS '02), J. R. Casas, D. M. Frangopol, and A. S. Nowak, Eds., pp. 365–366, CIMNE, Barcelona, Spain, 2002.
  32. M. K. Chryssanthopoulos and G. Sterrit, “Integration of deterioration modelling and reliability assessment for reinforced concrete bridge structures,” in Proceedings of the Asranet International Colloquium, Glasgow, UK, July 2002.