Table of Contents
ISRN Organic Chemistry
Volume 2012 (2012), Article ID 928484, 9 pages
http://dx.doi.org/10.5402/2012/928484
Research Article

Chitosan as a Renewable Heterogeneous Catalyst for the Knoevenagel Reaction in Ionic Liquid as Green Solvent

Department of Chemical Engineering, Ho Chi Minh City University of Technology, VNU-HCM, 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 70350, Vietnam

Received 3 April 2012; Accepted 14 June 2012

Academic Editors: D. Chaturvedi, F. D'Anna, J. R. Hwu, and L. Novak

Copyright © 2012 Nam T. S. Phan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Chiappe, P. Piccioli, and D. Pieraccini, “Selective N-alkylation of anilines in ionic liquids,” Green Chemistry, vol. 8, no. 3, pp. 277–281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. R. A. Sheldon, “Green solvents for sustainable organic synthesis: state of the art,” Green Chemistry, vol. 7, no. 5, pp. 267–278, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. V. I. Pârvulescu and C. Hardacre, “Catalysis in ionic liquids,” Chemical Reviews, vol. 107, no. 6, pp. 2615–2665, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Binnemans, “Lanthanides and actinides in ionic liquids,” Chemical Reviews, vol. 107, no. 6, pp. 2592–2614, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Jain, A. Kumar, S. Chauhan, and S. M. S. Chauhan, “Chemical and biochemical transformations in ionic liquids,” Tetrahedron, vol. 61, no. 5, pp. 1015–1060, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Baj, A. Chrobok, and S. Derfla, “A new method for dialkyl peroxides synthesis in ionic liquids as solvents,” Green Chemistry, vol. 8, no. 3, pp. 292–295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Y. Wang, M. M. Luo, Q. Lin, H. Chen, and X. J. Li, “Efficient biphasic hydroaminomethylation of long chain olefins in ionic liquids,” Green Chemistry, vol. 8, no. 6, pp. 545–548, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Hart, P. Pollet, D. J. Hahne et al., “Benign coupling of reactions and separations with reversible ionic liquids,” Tetrahedron, vol. 66, no. 5, pp. 1082–1090, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. B. C. Ranu and S. S. Dey, “Catalysis by ionic liquid: a simple, green and efficient procedure for the Michael addition of thiols and thiophosphate to conjugated alkenes in ionic liquid, [pmIm]Br,” Tetrahedron, vol. 60, no. 19, pp. 4183–4188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Yuan, N. Yan, C. Xiao et al., “Highly selective hydrogenation of aromatic chloronitro compounds to aromatic chloroamines with ionic-liquid-like copolymer stabilized platinum nanocatalysts in ionic liquids,” Green Chemistry, vol. 12, no. 2, pp. 228–233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Chrobok, “The Baeyer-Villiger oxidation of ketones with Oxone in the presence of ionic liquids as solvents,” Tetrahedron, vol. 66, no. 32, pp. 6212–6216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Fan, Y. Wang, Y. He, X. Zhang, and J. Wang, “Ru(III)-catalyzed oxidative reaction in ionic liquid: an efficient and practical route to 2-substituted benzothiazoles and their hybrids with pyrimidine nucleoside,” Tetrahedron Letters, vol. 51, no. 27, pp. 3493–3496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. L. Hu, Q. F. Liu, T. T. Lu, and M. Lu, “Highly efficient oxidation of organic halides to aldehydes and ketones with H5IO6 in ionic liquid [C12mim][FeCl4],” Catalysis Communications, vol. 11, no. 10, pp. 923–927, 2010. View at Publisher · View at Google Scholar
  14. S. Gago, S. S. Balula, S. Figueiredo et al., “Catalytic olefin epoxidation with cationic molybdenum(VI) cis-dioxo complexes and ionic liquids,” Applied Catalysis A, vol. 372, no. 1, pp. 67–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. D. Petroviæ, D. Simijonoviæ, V. P. Petroviæ, and S. Markoviæ, “Diethanolamine and N,N-diethylethanolamine ionic liquids as precatalyst-precursors and reaction media in green Heck reaction protocol,” Journal of Molecular Catalysis A, vol. 327, no. 1-2, pp. 45–50, 2010. View at Publisher · View at Google Scholar
  16. J. C. Cárdenas, L. Fadini, and C. A. Sierra, “Triphenylphosphite and ionic liquids: positive effects in the Heck cross-coupling reaction,” Tetrahedron Letters, vol. 51, no. 52, pp. 6867–6870, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. V. Escárcega-Bobadilla, E. Teuma, A. M. Masdeu-Bultó, and M. Gómez, “New bicyclic phosphorous ligands: synthesis, structure and catalytic applications in ionic liquids,” Tetrahedron, vol. 67, no. 2, pp. 421–428, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Singh, R. Ratti, and S. Kaur, “Synthesis and characterization of recyclable and recoverable MMT-clay exchanged ammonium tagged carbapalladacycle catalyst for Mizoroki-Heck and Sonogashira reactions in ionic liquid media,” Journal of Molecular Catalysis A, vol. 334, no. 1-2, pp. 13–19, 2011. View at Publisher · View at Google Scholar
  19. O. Bortolini, A. De Nino, A. Garofalo, L. Maiuolo, A. Procopio, and B. Russo, “Erbium triflate in ionic liquids: a recyclable system of improving selectivity in Diels-Alder reactions,” Applied Catalysis A, vol. 372, no. 2, pp. 124–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. S. Khan, J. Shah, and J. Liebscher, “Synthesis of new ionic-liquid-tagged organocatalysts and their application in stereoselective direct aldol reactions,” Tetrahedron, vol. 66, no. 27-28, pp. 5082–5088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Conte, G. Fiorani, B. Floris, P. Galloni, and S. Woodward, “Palladium-catalysed methylation of aryl halides in ionic liquids with stabilized AlMe3,” Applied Catalysis A, vol. 381, no. 1-2, pp. 161–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. D. J. Hong, D. W. Kim, and D. Y. Chi, “Facile ring-closure cyclization of arenes by nucleophilic C-alkylation reaction in ionic liquid,” Tetrahedron Letters, vol. 51, no. 1, pp. 54–56, 2010. View at Publisher · View at Google Scholar
  23. X. Nie, X. Liu, L. Gao, M. Liu, C. Song, and X. Guo, “SO3H-functionalized ionic liquid catalyzed alkylation of catechol with tert -Butyl alcohol,” Industrial and Engineering Chemistry Research, vol. 49, no. 17, pp. 8157–8163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Liang and C. Qi, “Synthesis of a novel ionic liquid with both Lewis and Brønsted acid sites and its catalytic activities,” Catalysis Communications, vol. 12, no. 9, pp. 808–812, 2011. View at Publisher · View at Google Scholar
  25. H. Guo, X. Li, J. L. Wang, X. H. Jin, and X. F. Lin, “Acidic ionic liquid [NMP]H2PO4 as dual solvent-catalyst for synthesis of β-alkoxyketones by the oxa-Michael addition reactions,” Tetrahedron, vol. 66, no. 42, pp. 8300–8303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. Epishina, A. S. Kulikov, N. V. Ignat'Ev, M. Schulte, and N. N. Makhova, “The first example of the Schmidt reaction in ionic liquids,” Mendeleev Communications, vol. 20, no. 6, pp. 335–336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Muthusamy and D. Azhagan, “Efficient synthesis of 19–31 membered macrocyclic tetralactones via ring closing metathesis in ionic liquids,” Tetrahedron, vol. 66, no. 41, pp. 8196–8202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. X.-W. Peng, J.-L. Ren, and R.-C. Sun, “Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid,” Biomacromolecules, vol. 11, no. 12, pp. 3519–3524, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Shi, W. Zhu, H. Li et al., “Microwave-accelerated esterification of salicylic acid using Brönsted acidic ionic liquids as catalysts,” Catalysis Communications, vol. 11, no. 7, pp. 588–591, 2010. View at Publisher · View at Google Scholar
  30. M. Moniruzzaman, K. Nakashima, N. Kamiya, and M. Goto, “Recent advances of enzymatic reactions in ionic liquids,” Biochemical Engineering Journal, vol. 48, no. 3, pp. 295–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. K.-P. Zhang, J. Q. Lai, Z.-L. Huang, and Z. Yang, “Penicillium expansum lipase-catalyzed production of biodiesel in ionic liquids,” Bioresource Technology, vol. 102, no. 3, pp. 2767–2772, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Yang, K.-P. Zhang, Y. Huang, and Z. Wang, “Both hydrolytic and transesterification activities of Penicillium expansum lipase are significantly enhanced in ionic liquid [BMIm][PF6],” Journal of Molecular Catalysis B, vol. 63, no. 1-2, pp. 23–30, 2010. View at Publisher · View at Google Scholar
  33. A. Kurata, S. Takemoto, T. Fujita, K. Iwai, M. Furusawa, and N. Kishimoto, “Synthesis of 3-cyclohexylpropyl caffeate from 5-caffeoylquinic acid with consecutive enzymatic conversions in ionic liquid,” Journal of Molecular Catalysis B, vol. 69, no. 3-4, pp. 161–167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Watanabe, “The study of factors influencing the depolymerisation of cellulose using a solid catalyst in ionic liquids,” Carbohydrate Polymers, vol. 80, no. 4, pp. 1168–1171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. H.-Y. Shen, Z. M. A. Judeh, C. B. Ching, and Q.-H. Xia, “Comparative studies on alkylation of phenol with tert-butyl alcohol in the presence of liquid or solid acid catalysts in ionic liquids,” Journal of Molecular Catalysis A, vol. 212, no. 1-2, pp. 301–308, 2004. View at Publisher · View at Google Scholar
  36. Z. Zhang and Z. K. Zhao, “Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid,” Carbohydrate Research, vol. 344, no. 15, pp. 2069–2072, 2009. View at Publisher · View at Google Scholar
  37. R. Saladino, R. Bernini, V. Neri, and C. Crestini, “A novel and efficient catalytic epoxidation of monoterpenes by homogeneous and heterogeneous methyltrioxorhenium in ionic liquids,” Applied Catalysis A, vol. 360, no. 2, pp. 171–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Bianchini, M. Crucianelli, F. D. Angelis, V. Neri, and R. Saladino, “Highly efficient C-H insertion reactions of hydrogen peroxide catalyzed by homogeneous and heterogeneous methyltrioxorhenium systems in ionic liquids,” Tetrahedron Letters, vol. 46, no. 14, pp. 2427–2432, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Freeman, “Properties and reactions of ylidenemalononitriles,” Chemical Reviews, vol. 80, no. 4, pp. 329–350, 1980. View at Publisher · View at Google Scholar
  40. L. F. Tietze, “Domino reactions in organic synthesis,” Chemical Reviews, vol. 96, no. 1, pp. 115–136, 1996. View at Publisher · View at Google Scholar
  41. D. B. Jackson, D. J. Macquarrie, and J. H. Clark, “Organic modification of hexagonal mesoporous silicas,” in Proceedings of the 4th International Symposium on Supported Reagents and Catalysts in Chemistry, 2001.
  42. L. Martins, K. M. Vieira, L. M. Rios, and D. Cardoso, “Basic catalyzed Knoevenagel condensation by FAU zeolites exchanged with alkylammonium cations,” Catalysis Today, vol. 133–135, no. 1–4, pp. 706–710, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. K. M. Parida, S. Mallick, P. C. Sahoo, and S. K. Rana, “A facile method for synthesis of amine-functionalized mesoporous zirconia and its catalytic evaluation in Knoevenagel condensation,” Applied Catalysis A, vol. 381, no. 1-2, pp. 226–232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Karmakar, B. Chowdhury, and J. Banerji, “Mesoporous titanosilicate Ti-TUD-1 catalyzed Knoevenagel reaction: an efficient green synthesis of trisubstituted electrophilic olefins,” Catalysis Communications, vol. 11, no. 7, pp. 601–605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Shang, J. Sun, S. Wu, Y. Yang, Q. Kan, and J. Guan, “Direct synthesis of acid-base bifunctional mesoporous MCM-41 silica and its catalytic reactivity in Deacetalization-Knoevenagel reactions,” Microporous and Mesoporous Materials, vol. 134, no. 1–3, pp. 44–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. K. M. Parida and D. Rath, “Amine functionalized MCM-41: an active and reusable catalyst for Knoevenagel condensation reaction,” Journal of Molecular Catalysis A, vol. 310, no. 1-2, pp. 93–100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Martins, W. Hölderich, P. Hammer, and D. Cardoso, “Preparation of different basic Si-MCM-41 catalysts and application in the Knoevenagel and Claisen-Schmidt condensation reactions,” Journal of Catalysis, vol. 271, no. 2, pp. 220–227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Shang, J. Sun, S. Wu, Y. Yang, Q. Kan, and J. Guan, “Direct synthesis of acid-base bifunctional mesoporous MCM-41 silica and its catalytic reactivity in Deacetalization-Knoevenagel reactions,” Microporous and Mesoporous Materials, vol. 134, no. 1–3, pp. 44–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Postole, B. Chowdhury, B. Karmakar, K. Pinki, J. Banerji, and A. Auroux, “Knoevenagel condensation reaction over acid-base bifunctional nanocrystalline CexZr1-xO2 solid solutions,” Journal of Catalysis, vol. 269, no. 1, pp. 110–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. N. T. S. Phan and C. W. Jones, “Highly accessible catalytic sites on recyclable organosilane-functionalized magnetic nanoparticles: an alternative to functionalized porous silica catalysts,” Journal of Molecular Catalysis A, vol. 253, no. 1-2, pp. 123–131, 2006. View at Publisher · View at Google Scholar
  51. M. Trilla, R. Pleixats, M. W. C. Man, and C. Bied, “Organic-inorganic hybrid silica materials containing imidazolium and dihydroimidazolium salts as recyclable organocatalysts for Knoevenagel condensations,” Green Chemistry, vol. 11, no. 11, pp. 1815–1820, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Gascon, U. Aktay, M. D. Hernandez-Alonso, G. P. M. van Klink, and F. Kapteijn, “Amino-based metal-organic frameworks as stable, highly active basic catalysts,” Journal of Catalysis, vol. 261, no. 1, pp. 75–87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. U. P. N. Tran, K. K. A. Le, and N. T. S. Phan, “Expanding applications of metal−organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction,” ACS Catalysis, vol. 1, no. 2, pp. 120–127, 2011. View at Publisher · View at Google Scholar
  54. M. J. Gronnow, R. Luque, D. J. Macquarrie, and J. H. Clark, “A novel highly active biomaterial supported palladium catalyst,” Green Chemistry, vol. 7, no. 7, pp. 552–557, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. S. E. S. Leonhardt, A. Stolle, B. Ondruschka et al., “Chitosan as a support for heterogeneous Pd catalysts in liquid phase catalysis,” Applied Catalysis A, vol. 379, no. 1-2, pp. 30–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Martina, S. E. S. Leonhardt, B. Ondruschka, M. Curini, A. Binello, and G. Cravotto, “In situ cross-linked chitosan Cu(I) or Pd(II) complexes as a versatile, eco-friendly recyclable solid catalyst,” Journal of Molecular Catalysis A, vol. 334, no. 1-2, pp. 60–64, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. B. C. E. Makhubela, A. Jardine, and G. S. Smith, “Pd nanosized particles supported on chitosan and 6-deoxy-6-amino chitosan as recyclable catalysts for Suzuki-Miyaura and Heck cross-coupling reactions,” Applied Catalysis A, vol. 393, no. 1-2, pp. 231–241, 2010. View at Publisher · View at Google Scholar
  58. T. C. O. Mac Leod, V. Palaretti, V. P. Barros, A. L. Faria, T. A. Silva, and M. D. Assis, “Jacobsen catalyst immobilized on chitosan membrane as interface catalyst in organic/aqueous system for alkene oxidation,” Applied Catalysis A, vol. 361, no. 1-2, pp. 152–159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Sudheesh, S. K. Sharma, and R. S. Shukla, “Chitosan as an eco-friendly solid base catalyst for the solvent-free synthesis of jasminaldehyde,” Journal of Molecular Catalysis A, vol. 321, no. 1-2, pp. 77–82, 2010. View at Publisher · View at Google Scholar
  60. R. S. Varma and V. V. Namboodiri, “An expeditious solvent-free route to ionic liquids using microwaves,” Chemical Communications, vol. 7, pp. 643–644, 2001. View at Publisher · View at Google Scholar
  61. J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser, and R. D. Rogers, “Room temperature ionic liquids as novel media for “clean” liquid-liquid extraction,” Chemical Communications, no. 16, pp. 1765–1766, 1998. View at Google Scholar · View at Scopus
  62. R. Valentin, K. Molvinger, F. Quignard, and D. Brunel, “Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry,” New Journal of Chemistry, vol. 27, no. 12, pp. 1690–1692, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. Z. Liu, H. Bai, and D. D. Sun, “Facile fabrication of porous chitosan/TiO2/Fe3O4 microspheres with multifunction for water purifications,” New Journal of Chemistry, vol. 35, no. 1, pp. 137–140, 2011. View at Publisher · View at Google Scholar
  64. C. Lau, M. J. Cooney, and P. Atanassov, “Conductive macroporous composite chitosan-carbon nanotube scaffolds,” Langmuir, vol. 24, no. 13, pp. 7004–7010, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. A. El Kadib, K. Molvinger, C. Guimon, F. Quignard, and D. Brunel, “Design of stable nanoporous hybrid chitosan/titania as cooperative bifunctional catalysts,” Chemistry of Materials, vol. 20, no. 6, pp. 2198–2204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Kanai, T. Oshima, and Y. Baba, “Synthesis of highly porous chitosan microspheres anchored with 1,2-ethylenedisulfide moiety for the recovery of precious metal ions,” Industrial & Engineering Chemistry Research, vol. 47, no. 9, pp. 3114–3120, 2008. View at Publisher · View at Google Scholar
  67. B. Kang, Y. D. Dai, H. Q. Zhang, and D. Chen, “Synergetic degradation of chitosan with gamma radiation and hydrogen peroxide,” Polymer Degradation and Stability, vol. 92, no. 3, pp. 359–362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Bangyekan, D. Aht-Ong, and K. Srikulkit, “Preparation and properties evaluation of chitosan-coated cassava starch films,” Carbohydrate Polymers, vol. 63, no. 1, pp. 61–71, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. B. Klaykruayat, K. Siralertmukul, and K. Srikulkit, “Chemical modification of chitosan with cationic hyperbranched dendritic polyamidoamine and its antimicrobial activity on cotton fabric,” Carbohydrate Polymers, vol. 80, no. 1, pp. 197–207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Ma, D. Yang, Y. Zhou, M. Xiao, J. F. Kennedy, and J. Nie, “Preparation and characterization of water-soluble N-alkylated chitosan,” Carbohydrate Polymers, vol. 74, no. 1, pp. 121–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Sabnis and L. H. Block, “Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan,” Polymer Bulletin, vol. 39, no. 1, pp. 67–71, 1997. View at Google Scholar · View at Scopus
  72. P. Formentín, H. Garcıía, and A. Leyva, “Assessment of the suitability of imidazolium ionic liquids as reaction medium for base-catalysed reactions: case of Knoevenagel and Claisen-Schmidt reactions,” Journal of Molecular Catalysis A, vol. 214, no. 1, pp. 137–142, 2004. View at Publisher · View at Google Scholar
  73. F. Santamarta, P. Verdía, and E. Tojo, “A simple, efficient and green procedure for Knoevenagel reaction in [MMIm][MSO4] ionic liquid,” Catalysis Communications, vol. 9, no. 8, pp. 1779–1781, 2008. View at Google Scholar
  74. Y. Kubota, Y. Nishizaki, H. Ikeya et al., “Organic-silicate hybrid catalysts based on various defined structures for Knoevenagel condensation,” Microporous and Mesoporous Materials, vol. 70, no. 1–3, pp. 135–149, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Liu, J. Liang, X. H. Liu, J. C. Fan, and Z. C. Shang, “Polyethylene glycol (PEG) as a benign solvent for Knoevenagel condensation,” Chinese Chemical Letters, vol. 19, no. 9, pp. 1043–1046, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. G. Langhendries, D. E. De Vos, G. V. Baron, and P. A. Jacobs, “Quantitative sorption experiments on Ti-zeolites and relation with α-olefin oxidation by H2O2,” Journal of Catalysis, vol. 187, no. 2, pp. 453–463, 1999. View at Google Scholar · View at Scopus
  77. D. J. Macquarrie and D. B. Jackson, “Aminopropylated MCMs as base catalysts: a comparison with aminopropylated silica,” Chemical Communications, no. 18, pp. 1781–1782, 1997. View at Google Scholar · View at Scopus
  78. I. Rodriguez, G. Sastre, A. Corma, and S. Iborra, “Catalytic activity of proton sponge: application to knoevenagel condensation reactions,” Journal of Catalysis, vol. 183, no. 1, pp. 14–23, 1999. View at Google Scholar · View at Scopus
  79. A. Corma, S. Iborra, I. Rodriguez, and F. Sanchez, “Immobilized proton sponge on inorganic carriers the synergic effect of the support on catalytic activity,” Journal of Catalysis, vol. 211, no. 1, pp. 208–215, 2002. View at Google Scholar
  80. M. J. Climent, A. Corma, I. Domínguez, S. Iborra, M. J. Sabater, and G. Sastre, “Gem-diamines as highly active organocatalysts for carbon-carbon bond formation,” Journal of Catalysis, vol. 246, no. 1, pp. 136–146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Juan-Alcañiz, E. V. Ramos-Fernandez, U. Lafont, J. Gascon, and F. Kapteijn, “Building MOF bottles around phosphotungstic acid ships: one-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts,” Journal of Catalysis, vol. 269, no. 1, pp. 229–241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. F. Dong, Y. Q. Li, and R. F. Dai, “Knoevenagel condensation catalysed by poly(vinyl chloride) supported tetraethylenepentamine (PVC-TEPA),” Chinese Chemical Letters, vol. 18, no. 3, pp. 266–268, 2007. View at Publisher · View at Google Scholar
  83. A. Pande, K. Ganesan, A. K. Jain, P. K. Gupta, and R. C. Malhotra, “A novel eco-friendly process for the synthesis of 2-chlorobenzylidenemalononitrile and its analogues using water as a solvent,” Organic Process Research and Development, vol. 9, no. 2, pp. 133–136, 2005. View at Publisher · View at Google Scholar · View at Scopus